Julia Redden

From: Clementine Dulieu

Sent: Thursday, September 26, 2019 9:24 AM

To: tims@russellsgc.com

Cc: Katie Wolf; Julia Redden; Kathleen Kwasniak

Subject: Wayland Property Owner Data Transmittal - August/Sept 2019

Attachments: ERM Lab Reports_August Sept 2019.pdf; Russell's Garden Center BWSC-123.pdf

Hi Tim,

ERM collected groundwater samples from monitoring wells located on Russell's Garden Center property at the former Raytheon Facility located at 430 Boston Post Road in Wayland, MA in August/September 2019. The analytical results and BWSC-123 form are attached to this email.

These results are being sent via email for Russell's Garden Center records.

Please let me know if you have any questions or require any additional information.

Thanks,

Clementine Dulieu Project Geologist

ERM

One Beacon Street, 5th Floor | Boston, MA 02108 | USA **T** +1 617 646 7860 | **M** +1 774 722 2902 **E** clementine.dulieu@erm.com | **W** www.erm.com

Massachusetts Department of Environmental Protection *Bureau of Waste Site Cleanup*

BWSC123

This Notice is Related to: Release Tracking Number

F	₹e	leas	se T	Γrac	king	Ν	um	be

NOTICE OF ENVIRONMENTAL SAMPLING

	As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan
Α.	The address of the disposal site related to this Notice and Release Tracking Number (provided above):
1.	Street Address:
	City/Town: Zip Code:
В.	This notice is being provided to the following party:
1.	Name:
2.	Street Address:
	City/Town: Zip Code:
C.	This notice is being given to inform its recipient (the party listed in Section B):
	1. That environmental sampling will be/has been conducted at property owned by the recipient of this notice.
	2. Of the results of environmental sampling conducted at property owned by the recipient of this notice.
	3. Check to indicate if the analytical results are attached. (If item 2. above is checked, the analytical results from the environmental sampling must be attached to this notice.)
D.	Location of the property where the environmental sampling will be/has been conducted:
1.	Street Address:
	City/Town: Zip Code:
2.	MCP phase of work during which the sampling will be/has been conducted:
	Immediate Response Action Release Abatement Measure Utility-related Abatement Measure Phase I Initial Site Investigation Phase II Comprehensive Site Assessment Phase III Feasibility Evaluation Phase IV Remedy Implementation Plan Phase V/Remedy Operation Status Post-Temporary Solution Operation, Maintenance and Monitoring Other (specify)
3.	Description of property where sampling will be/has been conducted:
	residential commercial industrial school/playground Other(specify)
	Description of the sampling locations and types (e.g., soil, groundwater, indoor air, soil gas) to the extent known at the ne of this notice.
	Contact information related to the party providing this notice: ontact Name:
	reet Address:
	ty/Town: Zip Code:
	plenhone: Email:

Revised: 5/30/2014 Page 1 of 2

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

BW	SC ₁	23
----	-----------------	----

This Noti	ce is Rel	ated to:
Release	Tracking	Number

-	

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

MASSACHUSETTS REGULATIONS THAT REQUIRE THIS NOTICE

This notice is being provided pursuant to the Massachusetts Contingency Plan and the notification requirement at 310 CMR 40.1403(10). The Massachusetts Contingency Plan is a state regulation that specifies requirements for parties who are taking actions to address releases of chemicals (oil or hazardous material) to the environment.

THE PERSON(S) PROVIDING THIS NOTICE

This notice has been sent to you by the party who is addressing a release of oil or hazardous material to the environment at the location listed in **Section A** on the reverse side of this form. (The regulations refer to the area where the oil or hazardous material is present as the "disposal site".)

PURPOSE OF THIS NOTICE

When environmental samples are taken as part of an investigation of a release for which a notification to MassDEP has been made under the Massachusetts Contingency Plan (310 CMR 40.0300) on behalf of someone other than the owner of the property, the regulations require that the property owner (listed in **Section B** on the reverse side of this form) be given notice of the environmental sampling. The regulations also require that the property owner subsequently receive the analytical results following the analysis of the environmental samples.

Section C on the reverse side of this form indicates the circumstance under which you are receiving this notice at this time. If you are receiving this notice to inform you of the analytical results following the analysis of the environmental samples, you should also have received, as an attachment, a copy of analytical results. These results should indicate the number and type(s) of samples (e.g., soil, groundwater) analyzed, any chemicals identified, and the measured concentrations of those chemicals.

Section D on the reverse side of this form identifies the property where the environmental sampling will be/has been conducted, provides a description of the sampling locations within the property, and indicates the phase of work under the Massachusetts Contingency Plan regulatory process during which the samples will be/were collected.

FOR MORE INFORMATION

Information about the general process for addressing releases of oil or hazardous material under the Massachusetts Contingency Plan and related public involvement opportunities may be found at http://www.mass.gov/eea/agencies/massdep/cleanup. For more information regarding this notice, you may contact the party listed in **Section E** on the reverse side of this form. Information about the disposal site identified in Section A is also available in files at the Massachusetts Department of Environmental Protection. See http://public.dep.state.ma.us/SearchableSites2/Search.aspx to view site-specific files on-line or http://mass.gov/eea/agencies/massdep/about/contacts/conduct-a-file-review.html if you would like to make an appointment to see these files in person. Please reference the **Release Tracking Number** listed in the upper right hand corner on the reverse side of this form when making file review appointments.

Revised: 5/30/2014 Page 2 of 2

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-158129-1 Client Project/Site: IDS Wayland

For:

ERM-Northeast
One Beacon Steet
5th Floor
Boston, Massachusetts 02108

Attn: Lyndsey Colburn

Authorized for release h

Authorized for release by: 8/30/2019 11:22:17 AM

Becky Mason, Project Manager II (413)572-4000

becky.mason@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

5

7

9

10

12

13

Client: ERM-Northeast Project/Site: IDS Wayland Laboratory Job ID: 480-158129-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	8
Surrogate Summary	35
QC Sample Results	36
QC Association Summary	41
Lab Chronicle	42
Certification Summary	45
Method Summary	47
Sample Summary	48
Receipt Checklists	49
Chain of Custody	50

- 3

6

0

9

10

12

11

Definitions/Glossary

Client: ERM-Northeast Job ID: 480-158129-1

Project/Site: IDS Wayland

Qualifiers

GC/MS VOA
Qualifier Qualifier Description

* LCS or LCSD is outside acceptance limits.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

3

Ę

J

0

9

10

12

13

Case Narrative

Client: ERM-Northeast
Project/Site: IDS Wayland

Job ID: 480-158129-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-158129-1

Receipt

The samples were received on 8/24/2019 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.0° C.

GC/MS VOA

Method 8260C: With the exception of diluted samples, per question G on the MassDEP Analytical Protocol Certification Form, TestAmerica's routine reporting limits do not achieve the CAM reporting limits specified in this CAM protocol for 1,2-dibromo-3-chloropropane, Carbon Disulfide, Isopropyl Ether, Naphthalene, tert-Amyl Methyl Ether and Tetrahydrofuran.

Method 8260C: The continuing calibration verification (CCV) for 1,4-Dioxane, Acetonitrile and Dichlorodifluoromethane associated with batch 480-489150 recovered outside the MCP control limit criteria. MCP protocol allows for 20% of the target compounds to be outside the 20% difference but not over 40% difference. Difficult analytes are allowed to be outside the 20% difference but not over 60% difference. The following samples were affected:

MW-217M-20190821-01 (480-158129-12),

, TB

-001-20190821-01 (480-158129-15) and PDB-BLANK -20190822-01 (480-158129-16).

Method 8260C: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch 480-489150 exceeded control limits for the following analytes:1,4-Dioxane. MCP protocol allows for 10% of the target compounds to be outside of the limits provided the recoveries are over 10%. The following samples were affected:

MW-217M-20190821-01 (480-158129-12),

TB -001-20190821-01 (480-158129-15) and PDB-BLANK -20190822-01 (480-158129-16).

Method 8260C: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch 480-489150 exceeded control limits for the following analyte: 2-Butanone. Unlike the calibration standards, this is due to the coelution with Ethyl Acetate in the spiking solution. This does not indicate a performance issue with the spike recovery, but rather the laboratory's ability to measure the two analytes together in a combined spiking solution. Through the use of spectral analysis, the two compounds can be distinguished from one another if present in a client sample. The following samples were affected:

MW-217M-20190821-01 (480-158129-12),

TB -001-20190821-01 (480-158129-15) and PDB-BLANK -20190822-01

(480-158129-16).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-158129-1

4

5

6

9

IU

12

14

	MassDEP Analytical Protocol Certification Form								
Labo	ratory Name:	TestAmer	ica Buffalo		Project #	:	480-1581	29-1	
Proje	Project Location: Wayland MA RTN:								
This	form provide	es certifications for	the data set f	or th	e following Labor	atory Sam	ple ID Number(s):	
480-1	58129-1[1-16	_							
Matrio	ces:	Groundwater/Surfa		<u>Ц</u>	Soil/Sediment _	Drinking	Water ∐Air	Other	:
					call that apply b			I	
8260		·	Mass DEP VP	H	8081 Pesticides	7196 Hex	_	Mass DEI	
CAM 8270	SVOC	CAM III B 7010 Metals	CAM IV A Mass DEP EP	<u>Ш</u> Н	CAM V B 4 8151 Herbicides	CAM VI E		CAM IX A	
CAM		CAM III C	CAM IV B		CAM V C	CAM VIII		CAM IX E	
6010 CAM	Metals III A	6020 Metals CAM III D	8082 PCB CAM V A		9012 / 9014/ 4500CN Total Cyanide/PAC CAM VI A	6860 Per			
	Affirmative	Responses to Que	stions A throu	ıgh F	are required for	"Presump	tive Certainty" st	atus	
Α		nples received in a c served (including ter ing time.					•	Yes	□ No
В	Were the an protocol(s) for	alytical method(s) a ollowed?	nd all associate	ed Q0	C requirements spe	ecified in th	e selected CAM	Yes	☐ No
С		uired corrective action and a control of the contro	•					Yes	□ No
D		oratory report comp urance and Quality (•	-	• .			Yes	□ No
E	modification	Hand APH Methods (s)? (Refer to the ind TO-15 Methods only	dividual method	l(s) fo	or a list of significar	nt modificat	tions).	Yes Yes	No No
F	evaluated in	olicable CAM protoco a laboratory narrativ	/e (including all	"No'	responses to Que	stions A th	rough E)?	Yes	□ No
		ses to Questions G	·		•			S T	
G	protocol(s)?	porting limits at or be			·			Yes	No ¹
<u>Data User Note:</u> Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WCS-07-350									
Н	Were all QC	performance stand	ards specified i	in the	e CAM protocol(s) a	achieved?		Yes	No ¹
ı	I Were results reported for the complete analyte list specified in the selected CAM protocol(s) ? ■ Yes □ No¹					☐ No¹			
1 All ne	All negative responses must be addressed in an attached laboratory narrative.								
obtair	I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.								
Signa	ture:	Ru M	asen		Position	:	Project Ma	nager	
ll .	ed Name:		Mason		Date	:	8/30/19 1	1:21	

Page 5 of 51 8/30/2019

Detection Summary

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

6

4

5

8

4.0

11

13

14

1

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: ERM-Northeast Job ID: 480-158129-1 Project/Site: IDS Wayland

Client Sample ID: MW-217M-20190821-01

Lab Sample ID: 480-158129-12

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	1.2	1.0	ug/L		8260C	Total/NA
Methyl tert-butyl ether	48	1.0	ug/L	1	8260C	Total/NA
Tert-amyl methyl ether	22	5.0	ug/L	1	8260C	Total/NA
Trichloroethene	3.9	1.0	ug/L	1	8260C	Total/NA

No Detections.

Client Sample ID: PDB-BLANK -20190822-01

Client Sample ID: TB -001-20190821-01

Lab Sample ID: 480-158129-16

Lab Sample ID: 480-158129-15

No Detections.

This Detection Summary does not include radiochemical test results.

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

6

A

9

10

12

11

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

3

4

5

O

8

10

11

13

14

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

4

5

O

8

9

10

12

14

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

3

9

10

12

14

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

3

4

9

10

12

14

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

2

4

5

6

R

9

10

12

14

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

6

А

6

9

10

12

4 1

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

4

E

6

_

9

10

12

14

Client: ERM-Northeast Job ID: 480-158129-1 Project/Site: IDS Wayland

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

2

7

a

10

12

14

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

4

5

7

9

10

12

. .

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

9

7

Ŏ

10

111

13

14

Client: ERM-Northeast Job ID: 480-158129-1 Project/Site: IDS Wayland

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

Client: ERM-Northeast Job ID: 480-158129-1 Project/Site: IDS Wayland

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

3

4

6

Q

9

11

Matrix: Water

Lab Sample ID: 480-158129-12

14

10

Method: 8260C - Volatile Organi Analyte	c Compounds (GC/MS) Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	1.0		ug/L			08/28/19 17:37	1
1,1,1-Trichloroethane	ND	1.0		ug/L			08/28/19 17:37	1
1,1,2,2-Tetrachloroethane	ND	0.50		ug/L			08/28/19 17:37	1
1,1,2-Trichloroethane	ND	1.0		ug/L			08/28/19 17:37	
1,1-Dichloroethane	1.2	1.0		ug/L			08/28/19 17:37	
1,1-Dichloroethene	ND	1.0		ug/L			08/28/19 17:37	
1,1-Dichloropropene	ND	1.0		ug/L			08/28/19 17:37	1
1,2,3-Trichlorobenzene	ND	1.0		ug/L			08/28/19 17:37	1
1,2,3-Trichloropropane	ND	1.0		ug/L			08/28/19 17:37	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			08/28/19 17:37	1
1,2,4-Trimethylbenzene	ND	1.0		ug/L			08/28/19 17:37	1
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L			08/28/19 17:37	1
1,2-Dichlorobenzene	ND	1.0		ug/L			08/28/19 17:37	
1,2-Dichloroethane	ND	1.0		ug/L			08/28/19 17:37	
1,2-Dichloropropane	ND	1.0		ug/L			08/28/19 17:37	
1,3,5-Trimethylbenzene	ND	1.0		ug/L			08/28/19 17:37	1
1,3-Dichlorobenzene	ND	1.0		ug/L			08/28/19 17:37	
1,3-Dichloropropane	ND	1.0		ug/L			08/28/19 17:37	
1,4-Dichlorobenzene	ND	1.0		ug/L			08/28/19 17:37	1
1,4-Dioxane	ND *	50		ug/L			08/28/19 17:37	1
2,2-Dichloropropane	ND	1.0		ug/L			08/28/19 17:37	1
2-Butanone (MEK)	ND *	10		ug/L			08/28/19 17:37	
2-Chlorotoluene	ND	1.0		ug/L			08/28/19 17:37	
2-Hexanone	ND	10		ug/L			08/28/19 17:37	
4-Chlorotoluene	ND	1.0		ug/L			08/28/19 17:37	
4-Isopropyltoluene	ND	1.0		ug/L			08/28/19 17:37	
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L			08/28/19 17:37	
Acetone	ND	50		ug/L			08/28/19 17:37	
Benzene	ND	1.0		ug/L			08/28/19 17:37	
Bromobenzene	ND	1.0		ug/L			08/28/19 17:37	
Bromoform	ND	1.0		ug/L			08/28/19 17:37	
Bromomethane	ND	2.0		ug/L			08/28/19 17:37	1

Client Sample ID: MW-217M-20190821-01

Date Collected: 08/21/19 09:50

Client: ERM-Northeast Job ID: 480-158129-1

Project/Site: IDS Wayland

Client Sample ID: MW-217M-20190821-01

Date Collected: 08/21/19 09:50

Date Received: 08/24/19 09:00

Lab Sample ID: 480-158129-12

Matrix: Water

Dil Fac	15

6

8

10

11

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Carbon disulfide	ND		10		ug/L			08/28/19 17:37	1
Carbon tetrachloride	ND		1.0		ug/L			08/28/19 17:37	1
Chlorobenzene	ND		1.0		ug/L			08/28/19 17:37	1
Chlorobromomethane	ND		1.0		ug/L			08/28/19 17:37	1
Chlorodibromomethane	ND		0.50		ug/L			08/28/19 17:37	1
Chloroethane	ND		2.0		ug/L			08/28/19 17:37	1
Chloroform	ND		1.0		ug/L			08/28/19 17:37	1
Chloromethane	ND		2.0		ug/L			08/28/19 17:37	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			08/28/19 17:37	1
cis-1,3-Dichloropropene	ND		0.40		ug/L			08/28/19 17:37	1
Dichlorobromomethane	ND		0.50		ug/L			08/28/19 17:37	1
Dichlorodifluoromethane	ND		1.0		ug/L			08/28/19 17:37	1
Ethyl ether	ND		1.0		ug/L			08/28/19 17:37	1
Ethylbenzene	ND		1.0		ug/L			08/28/19 17:37	1
Ethylene Dibromide	ND		1.0		ug/L			08/28/19 17:37	1
Hexachlorobutadiene	ND		0.40		ug/L			08/28/19 17:37	1
Isopropyl ether	ND		10		ug/L			08/28/19 17:37	1
Isopropylbenzene	ND		1.0		ug/L			08/28/19 17:37	1
Methyl tert-butyl ether	48		1.0		ug/L			08/28/19 17:37	1
Methylene Chloride	ND		1.0		ug/L			08/28/19 17:37	1
m-Xylene & p-Xylene	ND		2.0		ug/L			08/28/19 17:37	1
Naphthalene	ND		5.0		ug/L			08/28/19 17:37	1
n-Butylbenzene	ND		1.0		ug/L			08/28/19 17:37	1
N-Propylbenzene	ND		1.0		ug/L			08/28/19 17:37	1
o-Xylene	ND		1.0		ug/L			08/28/19 17:37	1
sec-Butylbenzene	ND		1.0		ug/L			08/28/19 17:37	1
Styrene	ND		1.0		ug/L			08/28/19 17:37	1
Tert-amyl methyl ether	22		5.0		ug/L			08/28/19 17:37	1
Tert-butyl ethyl ether	ND		5.0		ug/L			08/28/19 17:37	1
tert-Butylbenzene	ND		1.0		ug/L			08/28/19 17:37	1
Tetrachloroethene	ND		1.0		ug/L			08/28/19 17:37	1
Tetrahydrofuran	ND		10		ug/L			08/28/19 17:37	1
Toluene	ND		1.0		ug/L			08/28/19 17:37	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			08/28/19 17:37	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			08/28/19 17:37	1
Trichloroethene	3.9		1.0		ug/L			08/28/19 17:37	1
Trichlorofluoromethane	ND		1.0		ug/L			08/28/19 17:37	1
Vinyl chloride	ND		1.0		ug/L			08/28/19 17:37	1
Dibromomethane	ND		1.0		ug/L			08/28/19 17:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130			-		08/28/19 17:37	1
1,2-Dichloroethane-d4 (Surr)	102		70 - 130					08/28/19 17:37	1
4-Bromofluorobenzene (Surr)	99		70 - 130					08/28/19 17:37	1

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

-

4

5

6

8

9

11

13

14

II.

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

Δ

5

7

10

11

Matrix: Water

Lab Sample ID: 480-158129-15

4.0

14

110

Method: 8260C - Volatile Organi ^{Analyte}		(GC/MS) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L	<u>-</u> -		08/28/19 18:49	1
1,1,1-Trichloroethane	ND		1.0		ug/L			08/28/19 18:49	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/28/19 18:49	1
1,1,2-Trichloroethane	ND		1.0		ug/L			08/28/19 18:49	1
1,1-Dichloroethane	ND		1.0		ug/L			08/28/19 18:49	1
1,1-Dichloroethene	ND		1.0		ug/L			08/28/19 18:49	1
1,1-Dichloropropene	ND		1.0		ug/L			08/28/19 18:49	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/28/19 18:49	1
1,2,3-Trichloropropane	ND		1.0		ug/L			08/28/19 18:49	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/28/19 18:49	1
1,2,4-Trimethylbenzene	ND		1.0		ug/L			08/28/19 18:49	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			08/28/19 18:49	1
1,2-Dichlorobenzene	ND		1.0		ug/L			08/28/19 18:49	1
1,2-Dichloroethane	ND		1.0		ug/L			08/28/19 18:49	1
1,2-Dichloropropane	ND		1.0		ug/L			08/28/19 18:49	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			08/28/19 18:49	1
1,3-Dichlorobenzene	ND		1.0		ug/L			08/28/19 18:49	1
1,3-Dichloropropane	ND		1.0		ug/L			08/28/19 18:49	1
1,4-Dichlorobenzene	ND		1.0		ug/L			08/28/19 18:49	1
1,4-Dioxane	ND	*	50		ug/L			08/28/19 18:49	1
2,2-Dichloropropane	ND		1.0		ug/L			08/28/19 18:49	1
2-Butanone (MEK)	ND	*	10		ug/L			08/28/19 18:49	1
2-Chlorotoluene	ND		1.0		ug/L			08/28/19 18:49	1
2-Hexanone	ND		10		ug/L			08/28/19 18:49	1
4-Chlorotoluene	ND		1.0		ug/L			08/28/19 18:49	1
4-Isopropyltoluene	ND		1.0		ug/L			08/28/19 18:49	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			08/28/19 18:49	1
Acetone	ND		50		ug/L			08/28/19 18:49	1
Benzene	ND		1.0		ug/L			08/28/19 18:49	1
Bromobenzene	ND		1.0		ug/L			08/28/19 18:49	1
Bromoform	ND		1.0		ug/L			08/28/19 18:49	1
Bromomethane	ND		2.0		ug/L			08/28/19 18:49	1

Client Sample ID: TB -001-20190821-01

Date Collected: 08/21/19 00:00

Client: ERM-Northeast Job ID: 480-158129-1

Project/Site: IDS Wayland

Client Sample ID: TB -001-20190821-01

Lab Sample ID: 480-158129-15 Date Collected: 08/21/19 00:00

Matrix: Water

Date Received: 08/24/19 09:00 Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon disulfide	ND		10		ug/L			08/28/19 18:49	1
Carbon tetrachloride	ND		1.0		ug/L			08/28/19 18:49	1
Chlorobenzene	ND		1.0		ug/L			08/28/19 18:49	1
Chlorobromomethane	ND		1.0		ug/L			08/28/19 18:49	1
Chlorodibromomethane	ND		0.50		ug/L			08/28/19 18:49	1
Chloroethane	ND		2.0		ug/L			08/28/19 18:49	1
Chloroform	ND		1.0		ug/L			08/28/19 18:49	1
Chloromethane	ND		2.0		ug/L			08/28/19 18:49	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			08/28/19 18:49	1
cis-1,3-Dichloropropene	ND		0.40		ug/L			08/28/19 18:49	1
Dichlorobromomethane	ND		0.50		ug/L			08/28/19 18:49	1
Dichlorodifluoromethane	ND		1.0		ug/L			08/28/19 18:49	1
Ethyl ether	ND		1.0		ug/L			08/28/19 18:49	1
Ethylbenzene	ND		1.0		ug/L			08/28/19 18:49	1
Ethylene Dibromide	ND		1.0		ug/L			08/28/19 18:49	1
Hexachlorobutadiene	ND		0.40		ug/L			08/28/19 18:49	1
Isopropyl ether	ND		10		ug/L			08/28/19 18:49	1
Isopropylbenzene	ND		1.0		ug/L			08/28/19 18:49	1
Methyl tert-butyl ether	ND		1.0		ug/L			08/28/19 18:49	1
Methylene Chloride	ND		1.0		ug/L			08/28/19 18:49	1
m-Xylene & p-Xylene	ND		2.0		ug/L			08/28/19 18:49	1
Naphthalene	ND		5.0		ug/L			08/28/19 18:49	1
n-Butylbenzene	ND		1.0		ug/L			08/28/19 18:49	1
N-Propylbenzene	ND		1.0		ug/L			08/28/19 18:49	1
o-Xylene	ND		1.0		ug/L			08/28/19 18:49	1
sec-Butylbenzene	ND		1.0		ug/L			08/28/19 18:49	1
Styrene	ND		1.0		ug/L			08/28/19 18:49	1
Tert-amyl methyl ether	ND		5.0		ug/L			08/28/19 18:49	1
Tert-butyl ethyl ether	ND		5.0		ug/L			08/28/19 18:49	1
tert-Butylbenzene	ND		1.0		ug/L			08/28/19 18:49	1
Tetrachloroethene	ND		1.0		ug/L			08/28/19 18:49	1
Tetrahydrofuran	ND		10		ug/L			08/28/19 18:49	1
Toluene	ND		1.0		ug/L			08/28/19 18:49	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			08/28/19 18:49	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			08/28/19 18:49	1
Trichloroethene	ND		1.0		ug/L			08/28/19 18:49	1
Trichlorofluoromethane	ND		1.0		ug/L			08/28/19 18:49	1
Vinyl chloride	ND		1.0		ug/L			08/28/19 18:49	1
Dibromomethane	ND		1.0		ug/L			08/28/19 18:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		70 - 130			_		08/28/19 18:49	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		70 - 130		08/28/19 18:49	1
1,2-Dichloroethane-d4 (Surr)	101		70 - 130		08/28/19 18:49	1
4-Bromofluorobenzene (Surr)	104		70 - 130		08/28/19 18:49	1

Eurofins TestAmerica, Buffalo

8/30/2019

Client: ERM-Northeast Job ID: 480-158129-1

Project/Site: IDS Wayland

Client Sample ID: PDB-BLANK -20190822-01

Date Collected: 08/22/19 13:20 Date Received: 08/24/19 09:00 Lab Sample ID: 480-158129-16

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			08/28/19 19:13	
1,1,1-Trichloroethane	ND		1.0		ug/L			08/28/19 19:13	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/28/19 19:13	
1,1,2-Trichloroethane	ND		1.0		ug/L			08/28/19 19:13	
1,1-Dichloroethane	ND		1.0		ug/L			08/28/19 19:13	
1,1-Dichloroethene	ND		1.0		ug/L			08/28/19 19:13	
1,1-Dichloropropene	ND		1.0		ug/L			08/28/19 19:13	
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/28/19 19:13	
1,2,3-Trichloropropane	ND		1.0		ug/L			08/28/19 19:13	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/28/19 19:13	
1,2,4-Trimethylbenzene	ND		1.0		ug/L			08/28/19 19:13	
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			08/28/19 19:13	
1,2-Dichlorobenzene	ND		1.0		ug/L			08/28/19 19:13	
1,2-Dichloroethane	ND		1.0		ug/L			08/28/19 19:13	
1,2-Dichloropropane	ND		1.0		ug/L			08/28/19 19:13	
1,3,5-Trimethylbenzene	ND		1.0		ug/L			08/28/19 19:13	
1,3-Dichlorobenzene	ND		1.0		ug/L			08/28/19 19:13	
1,3-Dichloropropane	ND		1.0		ug/L			08/28/19 19:13	
1,4-Dichlorobenzene	ND		1.0		ug/L			08/28/19 19:13	
1,4-Dioxane	ND	*	50		ug/L			08/28/19 19:13	
2,2-Dichloropropane	ND		1.0		ug/L			08/28/19 19:13	
2-Butanone (MEK)	ND	*	10		ug/L			08/28/19 19:13	
2-Chlorotoluene	ND		1.0		ug/L			08/28/19 19:13	
2-Hexanone	ND		10		ug/L			08/28/19 19:13	
4-Chlorotoluene	ND		1.0		ug/L			08/28/19 19:13	
4-Isopropyltoluene	ND		1.0		ug/L			08/28/19 19:13	
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			08/28/19 19:13	
Acetone	ND		50		ug/L			08/28/19 19:13	
Benzene	ND		1.0		ug/L			08/28/19 19:13	
Bromobenzene	ND		1.0		ug/L			08/28/19 19:13	
Bromoform	ND		1.0		ug/L			08/28/19 19:13	
Bromomethane	ND		2.0		ug/L			08/28/19 19:13	
Carbon disulfide	ND		10		ug/L			08/28/19 19:13	
Carbon tetrachloride	ND		1.0		ug/L			08/28/19 19:13	
Chlorobenzene	ND		1.0		ug/L			08/28/19 19:13	
Chlorobromomethane	ND		1.0		ug/L			08/28/19 19:13	
Chlorodibromomethane	ND		0.50		ug/L			08/28/19 19:13	
Chloroethane	ND		2.0		ug/L			08/28/19 19:13	
Chloroform	ND		1.0		ug/L			08/28/19 19:13	
Chloromethane	ND		2.0		ug/L			08/28/19 19:13	
cis-1,2-Dichloroethene	ND		1.0		ug/L			08/28/19 19:13	
cis-1,3-Dichloropropene	ND		0.40		ug/L			08/28/19 19:13	
Dichlorobromomethane	ND		0.50		ug/L			08/28/19 19:13	
Dichlorodifluoromethane	ND		1.0		ug/L			08/28/19 19:13	
Ethyl ether	ND		1.0		ug/L			08/28/19 19:13	
Ethylbenzene	ND		1.0		ug/L			08/28/19 19:13	
Ethylene Dibromide	ND		1.0		ug/L			08/28/19 19:13	
Hexachlorobutadiene	ND		0.40		ug/L			08/28/19 19:13	
Isopropyl ether	ND		10		ug/L			08/28/19 19:13	

Eurofins TestAmerica, Buffalo

8/30/2019

Page 33 of 51

5

7

9

1 4

12

14

Client: ERM-Northeast Job ID: 480-158129-1

Project/Site: IDS Wayland

Client Sample ID: PDB-BLANK -20190822-01

Lab Sample ID: 480-158129-16 Date Collected: 08/22/19 13:20

Matrix: Water

Date Received: 08/24/19 09:00

Analyte	Result Qualific	er RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND ND	1.0	ug/L		08/28/19 19:13	1
Methyl tert-butyl ether	ND	1.0	ug/L		08/28/19 19:13	1
Methylene Chloride	ND	1.0	ug/L		08/28/19 19:13	1
m-Xylene & p-Xylene	ND	2.0	ug/L		08/28/19 19:13	1
Naphthalene	ND	5.0	ug/L		08/28/19 19:13	1
n-Butylbenzene	ND	1.0	ug/L		08/28/19 19:13	1
N-Propylbenzene	ND	1.0	ug/L		08/28/19 19:13	1
o-Xylene	ND	1.0	ug/L		08/28/19 19:13	1
sec-Butylbenzene	ND	1.0	ug/L		08/28/19 19:13	1
Styrene	ND	1.0	ug/L		08/28/19 19:13	1
Tert-amyl methyl ether	ND	5.0	ug/L		08/28/19 19:13	1
Tert-butyl ethyl ether	ND	5.0	ug/L		08/28/19 19:13	1
tert-Butylbenzene	ND	1.0	ug/L		08/28/19 19:13	1
Tetrachloroethene	ND	1.0	ug/L		08/28/19 19:13	1
Tetrahydrofuran	ND	10	ug/L		08/28/19 19:13	1
Toluene	ND	1.0	ug/L		08/28/19 19:13	1
trans-1,2-Dichloroethene	ND	1.0	ug/L		08/28/19 19:13	1
trans-1,3-Dichloropropene	ND	0.40	ug/L		08/28/19 19:13	1
Trichloroethene	ND	1.0	ug/L		08/28/19 19:13	1
Trichlorofluoromethane	ND	1.0	ug/L		08/28/19 19:13	1
Vinyl chloride	ND	1.0	ug/L		08/28/19 19:13	1
Dibromomethane	ND	1.0	ug/L		08/28/19 19:13	1
Surrogate	%Recovery Qualifi	er Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103	70 - 130			08/28/19 19:13	1
1,2-Dichloroethane-d4 (Surr)	103	70 - 130			08/28/19 19:13	1
4-Bromofluorobenzene (Surr)	104	70 - 130			08/28/19 19:13	1

Surrogate Summary

Client: ERM-Northeast Job ID: 480-158129-1

Method: 8260C - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Su
		TOL	DCA	BFB
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)
480-158129-1	MW-1001M-20190821-01	103	101	107
480-158129-2	MW-1002M-20190821-01	100	101	103
480-158129-3	MW-1003-20190821-01	101	105	106
480-158129-4	MW-1005-20190821-01	100	103	102
480-158129-5	MW-1010D-20190821-01	96	101	99
480-158129-6	MW-1010M-20190821-01	101	101	105
480-158129-7	MW-1014-20190821-01	101	104	104
480-158129-8	MW-1015D-20190821-01	101	101	102
480-158129-9	MW-1028-20190821-01	100	102	104
480-158129-10	MW-1032-20190822-01	103	103	103
480-158129-11	MW-1034-20190821-01	97	101	98
480-158129-12	MW-217M-20190821-01	100	102	99
480-158129-13	DUP-001-20190821-01	99	101	102
480-158129-14	DUP-002-20190821-01	101	102	102
480-158129-15	TB -001-20190821-01	102	101	104
480-158129-16	PDB-BLANK -20190822-01	103	103	104
LCS 480-489150/5	Lab Control Sample	98	98	105
LCSD 480-489150/6	Lab Control Sample Dup	98	98	105
MB 480-489150/8	Method Blank	100	100	102

Project/Site: IDS Wayland

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Eurofins TestAmerica, Buffalo

Page 35 of 51

QC Sample Results

Client: ERM-Northeast Job ID: 480-158129-1 Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-489150/8

Matrix: Water

Client Sample ID: Method Blank	
Prep Type: Total/NA	

Analysis Batch: 489150	МВ	MB						
Analyte	Result	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			08/28/19 12:29	1
1,1,1-Trichloroethane	ND		1.0	ug/L			08/28/19 12:29	1
1,1,2,2-Tetrachloroethane	ND	0	.50	ug/L			08/28/19 12:29	1
1,1,2-Trichloroethane	ND		1.0	ug/L			08/28/19 12:29	1
1,1-Dichloroethane	ND		1.0	ug/L			08/28/19 12:29	1
1,1-Dichloroethene	ND		1.0	ug/L			08/28/19 12:29	1
1,1-Dichloropropene	ND		1.0	ug/L			08/28/19 12:29	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/28/19 12:29	1
1,2,3-Trichloropropane	ND		1.0	ug/L			08/28/19 12:29	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/28/19 12:29	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			08/28/19 12:29	1
1,2-Dibromo-3-Chloropropane	ND		5.0	ug/L			08/28/19 12:29	1
1,2-Dichlorobenzene	ND		1.0	ug/L			08/28/19 12:29	1
1,2-Dichloroethane	ND		1.0	ug/L			08/28/19 12:29	1
1,2-Dichloropropane	ND		1.0	ug/L			08/28/19 12:29	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			08/28/19 12:29	1
1,3-Dichlorobenzene	ND		1.0	ug/L			08/28/19 12:29	1
1,3-Dichloropropane	ND		1.0	ug/L			08/28/19 12:29	1
1,4-Dichlorobenzene	ND		1.0	ug/L			08/28/19 12:29	
1,4-Dioxane	ND		50	ug/L			08/28/19 12:29	1
2,2-Dichloropropane	ND		1.0	ug/L			08/28/19 12:29	1
2-Butanone (MEK)	ND		10	ug/L			08/28/19 12:29	
2-Chlorotoluene	ND		1.0	ug/L			08/28/19 12:29	1
2-Hexanone	ND		10	ug/L			08/28/19 12:29	1
4-Chlorotoluene	ND		1.0	ug/L			08/28/19 12:29	
	ND		1.0				08/28/19 12:29	1
4-Isopropyltoluene	ND ND		1.0	ug/L			08/28/19 12:29	1
4-Methyl-2-pentanone (MIBK)				ug/L				
Acetone	ND		50	ug/L			08/28/19 12:29	1
Benzene	ND		1.0	ug/L			08/28/19 12:29	1
Bromobenzene	ND		1.0	ug/L			08/28/19 12:29	1
Bromoform	ND		1.0	ug/L			08/28/19 12:29	1
Bromomethane	ND		2.0	ug/L			08/28/19 12:29	1
Carbon disulfide	ND		10	ug/L			08/28/19 12:29	1
Carbon tetrachloride	ND		1.0	ug/L			08/28/19 12:29	1
Chlorobenzene	ND		1.0	ug/L			08/28/19 12:29	1
Chlorobromomethane	ND		1.0	ug/L			08/28/19 12:29	1
Chlorodibromomethane	ND		.50	ug/L			08/28/19 12:29	1
Chloroethane	ND		2.0	ug/L			08/28/19 12:29	1
Chloroform	ND		1.0	ug/L			08/28/19 12:29	1
Chloromethane	ND		2.0	ug/L			08/28/19 12:29	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			08/28/19 12:29	1
cis-1,3-Dichloropropene	ND	0	.40	ug/L			08/28/19 12:29	1
Dichlorobromomethane	ND	0	.50	ug/L			08/28/19 12:29	1
Dichlorodifluoromethane	ND		1.0	ug/L			08/28/19 12:29	1
Ethyl ether	ND		1.0	ug/L			08/28/19 12:29	1
Ethylbenzene	ND		1.0	ug/L			08/28/19 12:29	1
Ethylene Dibromide	ND		1.0	ug/L			08/28/19 12:29	1
Hexachlorobutadiene	ND	0	.40	ug/L			08/28/19 12:29	1

Eurofins TestAmerica, Buffalo

Page 36 of 51

Job ID: 480-158129-1

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-489150/8

Matrix: Water

Analysis Batch: 489150

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropyl ether	ND		10		ug/L			08/28/19 12:29	1
Isopropylbenzene	ND		1.0		ug/L			08/28/19 12:29	1
Methyl tert-butyl ether	ND		1.0		ug/L			08/28/19 12:29	1
Methylene Chloride	ND		1.0		ug/L			08/28/19 12:29	1
m-Xylene & p-Xylene	ND		2.0		ug/L			08/28/19 12:29	1
Naphthalene	ND		5.0		ug/L			08/28/19 12:29	1
n-Butylbenzene	ND		1.0		ug/L			08/28/19 12:29	1
N-Propylbenzene	ND		1.0		ug/L			08/28/19 12:29	1
o-Xylene	ND		1.0		ug/L			08/28/19 12:29	1
sec-Butylbenzene	ND		1.0		ug/L			08/28/19 12:29	1
Styrene	ND		1.0		ug/L			08/28/19 12:29	1
Tert-amyl methyl ether	ND		5.0		ug/L			08/28/19 12:29	1
Tert-butyl ethyl ether	ND		5.0		ug/L			08/28/19 12:29	1
tert-Butylbenzene	ND		1.0		ug/L			08/28/19 12:29	1
Tetrachloroethene	ND		1.0		ug/L			08/28/19 12:29	1
Tetrahydrofuran	ND		10		ug/L			08/28/19 12:29	1
Toluene	ND		1.0		ug/L			08/28/19 12:29	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			08/28/19 12:29	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			08/28/19 12:29	1
Trichloroethene	ND		1.0		ug/L			08/28/19 12:29	1
Trichlorofluoromethane	ND		1.0		ug/L			08/28/19 12:29	1
Vinyl chloride	ND		1.0		ug/L			08/28/19 12:29	1

MB MB

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130		08/28/19 12:29	1
1,2-Dichloroethane-d4 (Surr)	100		70 - 130		08/28/19 12:29	1
4-Bromofluorobenzene (Surr)	102		70 - 130		08/28/19 12:29	1

1.0

ug/L

Lab Sample ID: LCS 480-489150/5

Matrix: Water

Dibromomethane

Analysis Batch: 489150

Client Sample I	D:	Lab	C	Contro	I Sample
		Pren	o '	Type:	Total/NA

08/28/19 12:29

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	22.3		ug/L		89	70 - 130
1,1,1-Trichloroethane	25.0	23.3		ug/L		93	70 - 130
1,1,2,2-Tetrachloroethane	25.0	20.8		ug/L		83	70 - 130
1,1,2-Trichloroethane	25.0	22.0		ug/L		88	70 - 130
1,1-Dichloroethane	25.0	23.7		ug/L		95	70 - 130
1,1-Dichloroethene	25.0	23.6		ug/L		94	70 - 130
1,1-Dichloropropene	25.0	23.3		ug/L		93	70 - 130
1,2,3-Trichlorobenzene	25.0	24.3		ug/L		97	70 - 130
1,2,3-Trichloropropane	25.0	21.8		ug/L		87	70 - 130
1,2,4-Trichlorobenzene	25.0	24.1		ug/L		96	70 - 130
1,2,4-Trimethylbenzene	25.0	21.6		ug/L		86	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	24.2		ug/L		97	70 - 130
1,2-Dichlorobenzene	25.0	21.8		ug/L		87	70 - 130
1,2-Dichloroethane	25.0	21.3		ug/L		85	70 - 130

Page 37 of 51

QC Sample Results

Client: ERM-Northeast Job ID: 480-158129-1

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-489150/5

Matrix: Water

Analysis Batch: 489150

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike		LCS	- ~-	%Rec.	
Analyte	Added		Qualifier Unit	D %Rec	Limits	
1,2-Dichloropropane	25.0	23.3	ug/L	93	70 - 130	
1,3,5-Trimethylbenzene	25.0	22.0	ug/L	88	70 - 130	
1,3-Dichlorobenzene	25.0	21.6	ug/L	86	70 - 130	
1,3-Dichloropropane	25.0	21.5	ug/L	86	70 - 130	
1,4-Dichlorobenzene	25.0	21.0	ug/L	84	70 - 130	
1,4-Dioxane	500	621	ug/L	124	70 - 130	
2,2-Dichloropropane	25.0	23.2	ug/L	93	70 - 130	
2-Butanone (MEK)	125	222	* ug/L	177	70 - 130	
2-Chlorotoluene	25.0	22.6	ug/L	90	70 _ 130	
2-Hexanone	125	119	ug/L	95	70 - 130	
4-Chlorotoluene	25.0	21.0	ug/L	84	70 - 130	
4-Isopropyltoluene	25.0	22.7	ug/L	91	70 - 130	
4-Methyl-2-pentanone (MIBK)	125	117	ug/L	93	70 _ 130	
Acetone	125	144	ug/L	115	70 - 130	
Benzene	25.0	22.5	ug/L	90	70 - 130	
Bromobenzene	25.0	21.9	ug/L	88	70 - 130	
Bromoform	25.0	23.3	ug/L	93	70 - 130	
Bromomethane	25.0	24.2	ug/L	97	70 _ 130	
Carbon disulfide	25.0	22.9	ug/L	91	70 - 130	
Carbon tetrachloride	25.0	24.1	ug/L	96	70 - 130	
Chlorobenzene	25.0	22.1	ug/L	88	70 - 130	
Chlorobromomethane	25.0	23.0	ug/L	92	70 - 130	
Chlorodibromomethane	25.0	22.2	ug/L	89	70 - 130	
Chloroethane	25.0	23.7	ug/L	95	70 - 130	
Chloroform	25.0	20.8	ug/L	83	70 - 130	
Chloromethane	25.0	24.2	ug/L	97	70 - 130	
cis-1,2-Dichloroethene	25.0	22.8	ug/L	91	70 - 130	
cis-1,3-Dichloropropene	25.0	23.1	ug/L	93	70 - 130	
Dichlorobromomethane	25.0	22.7	ug/L	91	70 - 130	
Dichlorodifluoromethane	25.0	29.9	ug/L	120	70 - 130 70 ₋ 130	
Ethyl ether	25.0	23.2	ug/L	93	70 - 130 70 - 130	
Ethylbenzene	25.0	21.9	ug/L	88	70 - 130	
Ethylene Dibromide	25.0	22.1	ug/L	88	70 ₋ 130	
Hexachlorobutadiene	25.0	24.4	ug/L	97	70 - 130	
Isopropyl ether	25.0	22.9	ug/L	91	70 - 130	
Isopropylbenzene	25.0	21.9	ug/L	88	70 - 130	
Methyl tert-butyl ether	25.0	22.3	ug/L	89	70 - 130	
Methylene Chloride	25.0	23.4	ug/L	94	70 - 130	
m-Xylene & p-Xylene	25.0	22.6	ug/L	90	70 - 130	
Naphthalene	25.0	24.4	ug/L	98	70 - 130	
n-Butylbenzene	25.0	21.7	ug/L	87	70 _ 130	
N-Propylbenzene	25.0	21.4	ug/L	86	70 - 130	
o-Xylene	25.0	22.3	ug/L	89	70 - 130	
sec-Butylbenzene	25.0	22.4	ug/L	90	70 - 130	
Styrene	25.0	23.0	ug/L	92	70 - 130	
Tert-amyl methyl ether	25.0	24.5	ug/L	98	70 - 130	
Tert-butyl ethyl ether	25.0	21.8	ug/L	87	70 - 130	
tert-Butylbenzene	25.0	21.8	ug/L	87	70 - 130	
Tetrachloroethene	25.0	25.1	ug/L	100	70 - 130	

Eurofins TestAmerica, Buffalo

8/30/2019

Page 38 of 51

9

3

__

0

8

46

11

13

QC Sample Results

Client: ERM-Northeast Job ID: 480-158129-1

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-489150/5

Matrix: Water

Analysis Batch: 489150

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Tetrahydrofuran	50.0	65.0		ug/L		130	70 - 130
Toluene	25.0	21.2		ug/L		85	70 - 130
trans-1,2-Dichloroethene	25.0	23.6		ug/L		94	70 - 130
trans-1,3-Dichloropropene	25.0	21.7		ug/L		87	70 - 130
Trichloroethene	25.0	23.3		ug/L		93	70 - 130
Trichlorofluoromethane	25.0	24.5		ug/L		98	70 - 130
Vinyl chloride	25.0	25.0		ug/L		100	70 - 130
Dibromomethane	25.0	22.4		ug/L		90	70 - 130

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	98		70 - 130
1,2-Dichloroethane-d4 (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	105		70 - 130

Lab Sample ID: LCSD 480-489150/6

Matrix: Water

Client Sample ID	Lab Co	ntrol Sam	ple Dup
	Pr	en Tyne: T	otal/NA

matrix. Water							i icp i	ypc. 10	tai/IIA
Analysis Batch: 489150									
	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	22.9		ug/L		92	70 - 130	3	20
1,1,1-Trichloroethane	25.0	23.1		ug/L		93	70 - 130	1	20
1,1,2,2-Tetrachloroethane	25.0	21.8		ug/L		87	70 - 130	5	20
1,1,2-Trichloroethane	25.0	22.4		ug/L		90	70 - 130	2	20
1,1-Dichloroethane	25.0	23.9		ug/L		96	70 - 130	1	20
1,1-Dichloroethene	25.0	23.4		ug/L		94	70 - 130	1	20
1,1-Dichloropropene	25.0	23.4		ug/L		94	70 - 130	0	20
1,2,3-Trichlorobenzene	25.0	23.8		ug/L		95	70 - 130	2	20
1,2,3-Trichloropropane	25.0	22.5		ug/L		90	70 - 130	3	20
1,2,4-Trichlorobenzene	25.0	24.5		ug/L		98	70 - 130	2	20
1,2,4-Trimethylbenzene	25.0	22.3		ug/L		89	70 - 130	3	20
1,2-Dibromo-3-Chloropropane	25.0	24.7		ug/L		99	70 - 130	2	20
1,2-Dichlorobenzene	25.0	22.6		ug/L		90	70 - 130	3	20
1,2-Dichloroethane	25.0	21.6		ug/L		86	70 - 130	1	20
1,2-Dichloropropane	25.0	23.3		ug/L		93	70 - 130	0	20
1,3,5-Trimethylbenzene	25.0	22.3		ug/L		89	70 - 130	1	20
1,3-Dichlorobenzene	25.0	22.3		ug/L		89	70 - 130	3	20
1,3-Dichloropropane	25.0	21.9		ug/L		88	70 - 130	2	20
1,4-Dichlorobenzene	25.0	21.7		ug/L		87	70 - 130	3	20
1,4-Dioxane	500	680	*	ug/L		136	70 - 130	9	20
2,2-Dichloropropane	25.0	22.9		ug/L		92	70 - 130	1	20
2-Butanone (MEK)	125	215	*	ug/L		172	70 - 130	3	20
2-Chlorotoluene	25.0	22.9		ug/L		91	70 - 130	1	20
2-Hexanone	125	118		ug/L		95	70 - 130	0	20
4-Chlorotoluene	25.0	21.5		ug/L		86	70 - 130	2	20
4-Isopropyltoluene	25.0	23.0		ug/L		92	70 - 130	1	20
4-Methyl-2-pentanone (MIBK)	125	118		ug/L		94	70 - 130	1	20
Acetone	125	128		ug/L		102	70 - 130	12	20
Benzene	25.0	22.5		ug/L		90	70 - 130	0	20

Job ID: 480-158129-1

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-489150/6

Matrix: Water

Analysis Batch: 489150

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromobenzene	25.0	22.5		ug/L		90	70 - 130	3	20
Bromoform	25.0	24.0		ug/L		96	70 - 130	3	20
Bromomethane	25.0	23.5		ug/L		94	70 - 130	3	20
Carbon disulfide	25.0	22.4		ug/L		89	70 - 130	2	20
Carbon tetrachloride	25.0	23.8		ug/L		95	70 - 130	1	20
Chlorobenzene	25.0	22.6		ug/L		90	70 - 130	2	20
Chlorobromomethane	25.0	23.7		ug/L		95	70 - 130	3	20
Chlorodibromomethane	25.0	22.8		ug/L		91	70 - 130	3	20
Chloroethane	25.0	22.3		ug/L		89	70 - 130	6	20
Chloroform	25.0	21.1		ug/L		84	70 - 130	1	20
Chloromethane	25.0	24.2		ug/L		97	70 - 130	0	20
cis-1,2-Dichloroethene	25.0	23.2		ug/L		93	70 - 130	2	20
cis-1,3-Dichloropropene	25.0	23.2		ug/L		93	70 - 130	0	20
Dichlorobromomethane	25.0	22.6		ug/L		90	70 - 130	0	20
Dichlorodifluoromethane	25.0	30.5		ug/L		122	70 - 130	2	20
Ethyl ether	25.0	23.7		ug/L		95	70 - 130	2	20
Ethylbenzene	25.0	22.1		ug/L		88	70 - 130	1	20
Ethylene Dibromide	25.0	22.4		ug/L		90	70 - 130	1	20
Hexachlorobutadiene	25.0	24.4		ug/L		98	70 - 130	0	20
Isopropyl ether	25.0	23.1		ug/L		93	70 - 130	1	20
Isopropylbenzene	25.0	22.4		ug/L		90	70 - 130	2	20
Methyl tert-butyl ether	25.0	22.5		ug/L		90	70 - 130	1	20
Methylene Chloride	25.0	23.3		ug/L		93	70 - 130	1	20
m-Xylene & p-Xylene	25.0	22.9		ug/L		91	70 - 130	1	20
Naphthalene	25.0	24.4		ug/L		98	70 - 130	0	20
n-Butylbenzene	25.0	21.9		ug/L		88	70 - 130	1	20
N-Propylbenzene	25.0	21.7		ug/L		87	70 - 130	1	20
o-Xylene	25.0	22.6		ug/L		90	70 - 130	1	20
sec-Butylbenzene	25.0	22.4		ug/L		90	70 - 130	0	20
Styrene	25.0	23.0		ug/L		92	70 - 130	0	20
Tert-amyl methyl ether	25.0	24.6		ug/L		99	70 - 130	0	20
Tert-butyl ethyl ether	25.0	22.0		ug/L		88	70 - 130	1	20
tert-Butylbenzene	25.0	22.1		ug/L		88	70 ₋ 130	1	20
Tetrachloroethene	25.0	26.2		ug/L		105	70 ₋ 130	4	20
Tetrahydrofuran	50.0	63.9		ug/L		128	70 - 130	2	20
Toluene	25.0	21.7		ug/L		87	70 ₋ 130	2	20
trans-1,2-Dichloroethene	25.0	23.9		ug/L		96	70 - 130	1	20
trans-1,3-Dichloropropene	25.0	22.1		ug/L		89	70 - 130	2	20
Trichloroethene	25.0	24.0		ug/L		96	70 - 130	3	20
Trichlorofluoromethane	25.0	23.9		ug/L		96	70 - 130	2	20
Vinyl chloride	25.0	24.4		ug/L		98	70 - 130	2	20
Dibromomethane	25.0	22.8		ug/L		91	70 - 130	2	20

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
Toluene-d8 (Surr)	98	70 - 130
1,2-Dichloroethane-d4 (Surr)	98	70 - 130
4-Bromofluorobenzene (Surr)	105	70 130

Eurofins TestAmerica, Buffalo

8/30/2019

Page 40 of 51

QC Association Summary

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

GC/MS VOA

Analysis Batch: 489150

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158129-12	MW-217M-20190821-01	Total/NA	Water	8260C	
480-158129-15	TB -001-20190821-01	Total/NA	Water	8260C	
480-158129-16	PDB-BLANK -20190822-01	Total/NA	Water	8260C	
MB 480-489150/8	Method Blank	Total/NA	Water	8260C	
LCS 480-489150/5	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-489150/6	Lab Control Sample Dup	Total/NA	Water	8260C	

6

8

9

44

12

13

16

Client: ERM-Northeast Job ID: 480-158129-1

Project/Site: IDS Wayland

Client: ERM-Northeast Job ID: 480-158129-1

Project/Site: IDS Wayland

4

5

7

8

10

11

12

14

15

Client Sample ID: MW-217M-20190821-01

Date Collected: 08/21/19 09:50 Date Received: 08/24/19 09:00 Lab Sample ID: 480-158129-12

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	489150	08/28/19 17:37	BTP	TAL BUF	_

Client: ERM-Northeast Job ID: 480-158129-1

Project/Site: IDS Wayland

Client Sample ID: TB -001-20190821-01

Lab Sample ID: 480-158129-15 Date Collected: 08/21/19 00:00

Matrix: Water

Date Received: 08/24/19 09:00

Batch Dilution Batch Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab BTP TAL BUF Total/NA Analysis 8260C 489150 08/28/19 18:49

Client Sample ID: PDB-BLANK -20190822-01

Lab Sample ID: 480-158129-16

Matrix: Water

Date Collected: 08/22/19 13:20 Date Received: 08/24/19 09:00

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab 08/28/19 19:13 TAL BUF Total/NA Analysis 8260C 489150 BTP

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins TestAmerica, Buffalo

Accreditation/Certification Summary

Client: ERM-Northeast

Project/Site: IDS Wayland

Job ID: 480-158129-1

Laboratory: Eurofins TestAmerica, Buffalo

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-0686	07-06-20
Arkansas DEQ	State Program	88-0686	07-06-20
California	State	2931	04-01-20
California	State Program	2931	04-01-20
Connecticut	State	PH-0568	09-30-20
Connecticut	State Program	PH-0568	09-30-20
Florida	NELAP	E87672	06-30-20
Florida	NELAP	E87672	06-30-20
Georgia	State	10026 (NY)	03-31-20
Georgia	State Program	10026 (NY)	03-31-20
Georgia	State Program	956	03-31-20
Georgia (DW)	State	956	03-31-20
Ilinois	NELAP	200003	09-30-19 *
Illinois	NELAP	200003	09-30-19 *
lowa	State Program	374	02-28-21
Kansas	NELAP	E-10187	01-31-20
Kansas	NELAP	E-10187	01-31-20
Kentucky (DW)	State	90029	12-31-20
Kentucky (DW)	State Program	90029	12-31-19
Kentucky (WW)	State	KY90029	12-31-20
Kentucky (WW)	State Program	90029	12-31-19
Louisiana	NELAP	02031	06-30-20
		02031 NY00044	12-04-20
Maine	State Program		
Maryland	State	294	03-31-20
Maryland	State Program	294	03-31-20
Massachusetts	State Program	M-NY044	06-30-20
Michigan	State Program	9937	03-31-20
Minnesota	NELAP	036-999-337	12-31-19
Minnesota	NELAP	1524384	12-31-19
New Hampshire	NELAP	2337	11-17-19
New Jersey	NELAP	NY455	06-30-20
New Jersey	NELAP	NY455	06-25-20
New York	NELAP	10026	03-31-20
New York	NELAP	10026	04-01-20
North Dakota	State	R-176	03-31-20
North Dakota	State Program	R-176	03-31-20
Oklahoma	State	9421	08-31-19
Oklahoma	State Program	9421	08-31-19 *
Oregon	NELAP	NY200003	06-09-20
Oregon	NELAP	NY200003	06-10-20
Pennsylvania	NELAP	68-00281	08-01-20
Rhode Island	State Program	LAO00328	12-30-19
Tennessee	State	02970	03-31-20
Tennessee	State Program	TN02970	03-31-20
Гехаѕ	NELAP	T104704412-15-6	07-31-20
Texas	NELAP	T104704412-18-10	08-01-20
JSDA	Federal	P330-11-00386	02-06-21
JSDA	US Federal Programs	P330-18-00039	02-06-21
Virginia	NELAP	460185	09-14-19
√irginia	NELAP	460185	09-14-19 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

4

5

9

12

⁷⁻octobal distribution of the post distribution of the control of

Accreditation/Certification Summary

Client: ERM-Northeast Job ID: 480-158129-1 Project/Site: IDS Wayland

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State	C784	02-10-20
Washington	State Program	C784	02-10-20
Wisconsin	State	998310390	08-31-19
Wisconsin	State Program	998310390	08-31-19 *

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Method Summary

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds (GC/MS)	MA DEP	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

MA DEP = Massachusetts Department Of Environmental Protection

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

1

6

7

10

11

12

14

Sample Summary

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158129-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-158129-12	MW-217M-20190821-01	Water	08/21/19 09:50	08/24/19 09:00	
480-158129-15	TB -001-20190821-01	Water	08/21/19 00:00	08/24/19 09:00	
480-158129-16	PDB-BLANK -20190822-01	Water	08/22/19 13:20	08/24/19 09:00	

Login Sample Receipt Checklist

Client: ERM-Northeast Job Number: 480-158129-1

Login Number: 158129 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Manhardt, Kara M

ordatori marmarati rata m		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	ERM
Samples received within 48 hours of sampling.	False	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

3

4

5

7

9

11

4.0

14

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

		100	Lab PM:		Carrier Tracking No(s):	COC No.	
Client Information	ina	Stelled	Mason, Becky C	ecky C		480-134087-19779.2	
Clent Contact: Clementine Dulleu	366	-0038	E-Mail: becky.ma	E-Mail: becky.mason@testamericainc.com		Page 2 of 2	
Company; ERM-Northeast				Analysis	Analysis Requested	Job #.	
Address: One Beacon Steet 5th Floor	Due Date Requested:					ŏ	
City: Boston	TAT Requested (days):					B - NaOH N - None C - Zn Acetate O - AsN	M - Hexane N - None O - AsNaO2
State, Zip: MA, 02108			i i i i				D4S SO3
Phone:	PO#: 0484298.01		(0			0	SZO3 O4 Dodecahydrate
Emait: clementine.dulieu@erm.com	WO#.			(on		I - Ice J - DI Water	one
Project Name: IDS Wayland	Project #: 48007117			JO Sa		K-EDIA L-EDA	W - pH 4-5 Z - other (specify)
site. Wayland, MA	SSOW#:					of co Other:	
Sample Identification	Sample Date Time	Sample (Type (C=comp, o-G=grab)	Matrix 6 (www.ater, 6 Sesolid, Cowastefoll, 6 BT-Tissue, Arekt) H.	Perform MS/N		য স্থাল বিধ্য তথ্য	ns/Note:
	X	(0)	Code	V			
MW-217M-20140821-01	08/21/14 09:50	6	Water	X		2	
DUP-001-20140821-01	08/21/14 12:00	9	Water	×		100	
DUP-002-20190821-01	08/21/119 12:05	6	Water	X		-3	
TB-001-20190821-01	08/21/18	TB	Water	×		FS	
PDB-BLANK-20140822-01	08/22/19 1320	5	Water	\ \ \		3	
			Water				
			Water				
			Water				
Possible Hazard Identification Non-Hazard Flammable Skin Instant	Poison B Unknown	Radiological		ample Disposal (A fee may	Disposal By Lab	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Months	hs
ested: I, II, III, IV, Other (specify)			0)	Special Instructions/QC Requirements	ments:		
	Date:		Time:		Method of Shipment.		
Relinquished by Paulina Stoley	123/18	11:00 Com	Company	Received by	Date(Time)	25/19 11:00 Company	t
	19/19	C. Con	Company	Received by Mark	Dag Stiny	14/190900 PR	B
6 1	Date/Time:	Con	Company	Received by:	Date/Time		y.
Custody Seals Intact: Custody Seal No.:				Cooler Temperature(s) °C and Other Remarks	er Remarks	# 312	
						Ver: 01	9100917

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-158731-1 Client Project/Site: IDS Wayland

Revision: 1

For:

ERM-Northeast One Beacon Steet 5th Floor Boston, Massachusetts 02108

Attn: Lyndsey Colburn

Authorized for release by: 9/25/2019 12:48:58 PM

Becky Mason, Project Manager II (413)572-4000

becky.mason@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

4

5

0

9

10

13

14

Client: ERM-Northeast Project/Site: IDS Wayland Laboratory Job ID: 480-158731-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	7
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	20
Lab Chronicle	21
Certification Summary	22
Method Summary	24
Sample Summary	25
Receipt Checklists	26
	27

Definitions/Glossary

Client: ERM-Northeast Job ID: 480-158731-1

Project/Site: IDS Wayland

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

* LCS or LCSD is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

3

4

5

7

8

46

11

12

. .

15

Eurofins TestAmerica, Buffalo

Case Narrative

Client: ERM-Northeast

Job ID: 480-158731-1

Project/Site: IDS Wayland

Job ID: 480-158731-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-158731-1

Revised report: Corrected sample IDs.

Comments

No additional comments.

Receipt

The samples were received on 9/6/2019 6:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.0° C.

GC/MS VOA

Method 8260C: With the exception of diluted samples, per question G on the MassDEP Analytical Protocol Certification Form, TestAmerica's routine reporting limits do not achieve the CAM reporting limits specified in this CAM protocol for 1,2-dibromo-3-chloropropane, Carbon Disulfide, Isopropyl Ether, Naphthalene, tert-Amyl Methyl Ether and Tetrahydrofuran.

Method(s) 8260C: The continuing calibration verification (CCV) for Chloroethane, Dichlorodifluoromethane, Trichlorofluoromethane, and Bromomethane associated with batch 480-491230 recovered outside the MCP control limit criteria. MCP protocol allows for 20% of the target compounds to be outside the 20% difference but not over 40% difference. Difficult analytes are allowed to be outside the 20% difference but not over 60% difference. The following samples were affected: MW-1040-20190905-01 (480-158731-1), MW-1023-20190905-01 (480-158731-2), MW-217D-20190905-01 (480-158731-3) and TB-20190905-01 (480-158731-4).

Method(s) 8260C: The laboratory control sample (LCS) and / or the laboratory control sample duplicate (LCSD) for batch 480-491230 exceeded control limits for the following analyte: 2-Butanone. Unlike the calibration standards, this is due to the coelution with Ethyl Acetate in the spiking solution. This does not indicate a performance issue with the spike recovery, but rather the laboratory's ability to measure the two analytes together in a combined spiking solution. Through the use of spectral analysis, the two compounds can be distinguished from one another if present in a client sample. The following samples were affected: MW-1040-20190905-01 (480-158731-1), MW-1023-20190905-01 (480-158731-2), MW-197D-20190905-01 (480-158731-3) and TB-20190905-01 (480-158731-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

0

10

11

12

14

		Mass	SDEP Analytica	I Protocol Certif	ication Form					
Laborato	ory Name:	TestAmeri	ica Buffalo	Project #:	480-15	8731				
Project	Location:	IDS Way	land, MA	RTN:						
This for	This form provides certifications for the following data set: list Laboratory Sample ID Number(s):									
480-158	480-158731-1 Samples 1-4									
Matrices	latrices: Groundwater/Surface Water Soil/Sediment Drinking Water Air Other:									
CAM Pr	CAM Protocols (check all that apply below):									
8260 VO		7470/7471 Hg	Mass DEP VPH	8081 Pesticides	7196 Hex Cr	Mass DEP APH				
CAM II A		CAM III B	CAM IV A	CAM V B	CAM VI B	CAM IX A				
8270 SV CAM II B		7010 Metals CAM III C	Mass DEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B				
CAWIII E		CAM III C	CAIVITY B	9014 Total	CAW VIII A	CAIVITA D				
6010 Me	etals	6020 Metals	8082 PCB	Cyanide/PAC	6860 Perchlorate					
CAM III /	Α 🔲	CAM III D	CAM V A	CAM VI A	CAM VIII B					
Af	ffirmative F	Responses to Que	stions A through	F are required for "	Presumptive Certainty"	status				
W	ere all sam	ples received in a c	condition consistent	with those describe	d on the Chain-of-Custody	/,				
			mperature) in the fie	eld or laboratory, and	d prepared/analyzed within					
	ethod holdi					Yes No				
D 1	B Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? Yes No									
	Were all required corrective actions and analytical response actions specified in the selected CAM									
pr	protocol(s) implemented for all identified performance standard non-conformances? Yes No									
					ecified in CAM VII A, and Reporting of Analytical					
_	ata"?	irance and Quality (Control Guidelines	or the Acquisition at	id Reporting of Analytical	Yes No				
a.	VPH, EPH	and APH Methods	only: Was each me	ethod conducted with	nout significant	Yes No				
	,	, ,	` '	or a list of significan	·					
				e analyte list reporte		Yes No				
				ance standard non-co o" responses to Ques	onformances identified and stions A through E)?	Yes No				
	Respons	es to Questions G	6, H and I below a	e required for "Pre	sumptive Certainty" stat					
G W	ere the rep	orting limits at or be	elow all CAM report	ing limits specified in	n the selected CAM					
pr	otocol(s)?					Yes No				
			-	r" status may not ned 1056 (2)(k) and WCS	essarily meet the data usa -07-350	bility and				
				e CAM protocol(s) a		Yes No				
.		•	•		eted CAM protocol(s) ?	Yes No				
¹ All nega	ative respo	nses must be addre	essed in an attache	d laboratory narrativ	e.					
obtaining		nation, the material o			oon my personal inquiry of he best of my knowledge a					
Signatur		<u> </u>	g i acomagge	Position:	Project Manag	er Assistant II				
Printed N	Name:	Joseph V. (Giacomazza	Date:	9/13/19	14:05				

Detection Summary

Client: ERM-Northeast

Project/Site: IDS Wayland

Job ID: 480-158731-1

2

4

5

7

0

Lab Sample ID: 480-158731-3

1(

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	2.2	1.0	ug/L		8260C	Total/NA
Trichloroethene	3.8	1.0	ug/L	1	8260C	Total/NA

Client Sample ID: TB-20190905-01

Client Sample ID: MW-217D-20190905-01

Lab Sample ID: 480-158731-4

No Detections.

13

14

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158731-1

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158731-1

1

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158731-1

2

3

4

_

a

10

12

14

Client: ERM-Northeast Job ID: 480-158731-1 Project/Site: IDS Wayland

Matrix: Water

Lab Sample ID: 480-158731-3

Client Sample ID: MW-217D-20190905-01

Date Collected: 09/05/19 09:45 Date Received: 09/06/19 06:15

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		09/11/19 07:25	1
1,1,1-Trichloroethane	ND	1.0	ug/L		09/11/19 07:25	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		09/11/19 07:25	1
1,1,2-Trichloroethane	ND	1.0	ug/L		09/11/19 07:25	1
1,1-Dichloroethane	ND	1.0	ug/L		09/11/19 07:25	1
1,1-Dichloroethene	ND	1.0	ug/L		09/11/19 07:25	1
1,1-Dichloropropene	ND	1.0	ug/L		09/11/19 07:25	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		09/11/19 07:25	1
1,2,3-Trichloropropane	ND	1.0	ug/L		09/11/19 07:25	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		09/11/19 07:25	1
1,2,4-Trimethylbenzene	ND	1.0	ug/L		09/11/19 07:25	1
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L		09/11/19 07:25	1
1,2-Dichlorobenzene	ND	1.0	ug/L		09/11/19 07:25	1
1,2-Dichloroethane	ND	1.0	ug/L		09/11/19 07:25	1
1,2-Dichloropropane	ND	1.0	ug/L		09/11/19 07:25	1
1,3,5-Trimethylbenzene	ND	1.0	ug/L		09/11/19 07:25	1
1,3-Dichlorobenzene	ND	1.0	ug/L		09/11/19 07:25	1
1,3-Dichloropropane	ND	1.0	ug/L		09/11/19 07:25	1
1,4-Dichlorobenzene	ND	1.0	ug/L		09/11/19 07:25	1
1,4-Dioxane	ND	50	ug/L		09/11/19 07:25	1
2,2-Dichloropropane	ND	1.0	ug/L		09/11/19 07:25	1
2-Butanone (MEK)	ND *	10	ug/L		09/11/19 07:25	1
2-Chlorotoluene	ND	1.0	ug/L		09/11/19 07:25	1
2-Hexanone	ND	10	ug/L		09/11/19 07:25	1
4-Chlorotoluene	ND	1.0	ug/L		09/11/19 07:25	1
4-Isopropyltoluene	ND	1.0	ug/L		09/11/19 07:25	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L		09/11/19 07:25	1
Acetone	ND	50	ug/L		09/11/19 07:25	1
Benzene	ND	1.0	ug/L		09/11/19 07:25	1
Bromobenzene	ND	1.0	ug/L		09/11/19 07:25	1
Bromoform	ND	1.0	ug/L		09/11/19 07:25	1
Bromomethane	ND	2.0	ug/L		09/11/19 07:25	1

Eurofins TestAmerica, Buffalo

Client: ERM-Northeast Project/Site: IDS Wayland

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Project/Site: IDS Wayland

Client Sample ID: MW-217D-20190905-01

Date Collected: 09/05/19 09:45 Date Received: 09/06/19 06:15 Lab Sample ID: 480-158731-3

Matrix: Water

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL Un		D Prepared	Analyzed	Dil Fac
Carbon disulfide	ND	10	ug	L		09/11/19 07:25	1
Carbon tetrachloride	ND	1.0	ug	L		09/11/19 07:25	1
Chlorobenzene	ND	1.0	ug/	L		09/11/19 07:25	1
Chlorobromomethane	ND	1.0	ug	L		09/11/19 07:25	1
Chlorodibromomethane	ND	0.50	ug	L		09/11/19 07:25	1
Chloroethane	ND	2.0	ug/	L		09/11/19 07:25	1
Chloroform	ND	1.0	ug	L		09/11/19 07:25	1
Chloromethane	ND	2.0	ug	L		09/11/19 07:25	1
cis-1,2-Dichloroethene	2.2	1.0	ug/	L		09/11/19 07:25	1
cis-1,3-Dichloropropene	ND	0.40	ug/	L		09/11/19 07:25	1
Dichlorobromomethane	ND	0.50	ug	L		09/11/19 07:25	1
Dichlorodifluoromethane	ND	1.0	ug	L		09/11/19 07:25	1
Ethyl ether	ND	1.0	ug/	L		09/11/19 07:25	1
Ethylbenzene	ND	1.0	ug	L		09/11/19 07:25	1
Ethylene Dibromide	ND	1.0	ug	L		09/11/19 07:25	1
Hexachlorobutadiene	ND	0.40	ug	L		09/11/19 07:25	1
Isopropyl ether	ND	10	ug	L		09/11/19 07:25	1
Isopropylbenzene	ND	1.0	ug	L		09/11/19 07:25	1
Methyl tert-butyl ether	ND	1.0	ug	L		09/11/19 07:25	1
Methylene Chloride	ND	1.0	ug	L		09/11/19 07:25	1
m-Xylene & p-Xylene	ND	2.0	ug	L		09/11/19 07:25	1
Naphthalene	ND	5.0	ug	L		09/11/19 07:25	1
n-Butylbenzene	ND	1.0	ug	L		09/11/19 07:25	1
N-Propylbenzene	ND	1.0	ug	L		09/11/19 07:25	1
o-Xylene	ND	1.0	ug	L		09/11/19 07:25	1
sec-Butylbenzene	ND	1.0	ug	L		09/11/19 07:25	1
Styrene	ND	1.0	ug	L		09/11/19 07:25	1
Tert-amyl methyl ether	ND	5.0	ug	L		09/11/19 07:25	1
Tert-butyl ethyl ether	ND	5.0	ug	L		09/11/19 07:25	1
tert-Butylbenzene	ND	1.0	ug	L		09/11/19 07:25	1
Tetrachloroethene	ND	1.0	ug	L		09/11/19 07:25	1
Tetrahydrofuran	ND	10	ug	L		09/11/19 07:25	1
Toluene	ND	1.0	ug	L		09/11/19 07:25	1
trans-1,2-Dichloroethene	ND	1.0	ug	L		09/11/19 07:25	1
trans-1,3-Dichloropropene	ND	0.40	ug	L		09/11/19 07:25	1
Trichloroethene	3.8	1.0	ug			09/11/19 07:25	1
Trichlorofluoromethane	ND	1.0	ug			09/11/19 07:25	1
Vinyl chloride	ND	1.0	ug			09/11/19 07:25	1
Dibromomethane	ND	1.0	ug			09/11/19 07:25	1

Analyzed

09/11/19 07:25

09/11/19 07:25

09/11/19 07:25

Prepared

Limits

70 - 130

70 - 130

70 - 130

%Recovery Qualifier

97

106

107

Dil Fac

3

4

5

7

9

11

12

Client: ERM-Northeast Job ID: 480-158731-1

Project/Site: IDS Wayland

Client Sample ID: TB-20190905-01

Date Collected: 09/05/19 00:00 Date Received: 09/06/19 06:15 Lab Sample ID: 480-158731-4

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			09/11/19 07:49	
1,1,1-Trichloroethane	ND	1.0	ug/L			09/11/19 07:49	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			09/11/19 07:49	
1,1,2-Trichloroethane	ND	1.0	ug/L			09/11/19 07:49	
1,1-Dichloroethane	ND	1.0	ug/L			09/11/19 07:49	
1,1-Dichloroethene	ND	1.0	ug/L			09/11/19 07:49	
1,1-Dichloropropene	ND	1.0	ug/L			09/11/19 07:49	
1,2,3-Trichlorobenzene	ND	1.0	ug/L			09/11/19 07:49	
1,2,3-Trichloropropane	ND	1.0	ug/L			09/11/19 07:49	
1,2,4-Trichlorobenzene	ND	1.0	ug/L			09/11/19 07:49	
1,2,4-Trimethylbenzene	ND	1.0	ug/L			09/11/19 07:49	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L			09/11/19 07:49	
1,2-Dichlorobenzene	ND	1.0	ug/L			09/11/19 07:49	
1,2-Dichloroethane	ND	1.0	ug/L			09/11/19 07:49	
1,2-Dichloropropane	ND	1.0	ug/L			09/11/19 07:49	
1,3,5-Trimethylbenzene	ND	1.0	ug/L			09/11/19 07:49	
1,3-Dichlorobenzene	ND	1.0	ug/L			09/11/19 07:49	
1,3-Dichloropropane	ND	1.0	ug/L			09/11/19 07:49	
1,4-Dichlorobenzene	ND	1.0	ug/L			09/11/19 07:49	
1,4-Dioxane	ND	50	ug/L			09/11/19 07:49	
2,2-Dichloropropane	ND	1.0	ug/L			09/11/19 07:49	
2-Butanone (MEK)	ND *	10	ug/L			09/11/19 07:49	
2-Chlorotoluene	ND	1.0	ug/L			09/11/19 07:49	
2-Hexanone	ND	10	ug/L			09/11/19 07:49	
4-Chlorotoluene	ND	1.0	ug/L			09/11/19 07:49	
4-Isopropyltoluene	ND	1.0	ug/L			09/11/19 07:49	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			09/11/19 07:49	
Acetone	ND	50	ug/L			09/11/19 07:49	
Benzene	ND	1.0	ug/L			09/11/19 07:49	
Bromobenzene	ND	1.0	ug/L			09/11/19 07:49	
Bromoform	ND	1.0	ug/L			09/11/19 07:49	
Bromomethane	ND	2.0	ug/L			09/11/19 07:49	
Carbon disulfide	ND	10	ug/L			09/11/19 07:49	
Carbon tetrachloride	ND	1.0	ug/L			09/11/19 07:49	
Chlorobenzene	ND	1.0	ug/L			09/11/19 07:49	
Chlorobromomethane	ND	1.0				09/11/19 07:49	
Chlorodibromomethane	ND	0.50	ug/L ug/L			09/11/19 07:49	
Chloroethane	ND	2.0	ug/L			09/11/19 07:49	
Chloroform	ND	1.0	_			09/11/19 07:49	
Chloromethane			ug/L			09/11/19 07:49	
	ND ND	2.0	ug/L				
cis-1,2-Dichloroethene	ND ND	1.0	ug/L			09/11/19 07:49	
cis-1,3-Dichloropropene	ND	0.40	ug/L			09/11/19 07:49	
Dichlorobromomethane	ND	0.50	ug/L			09/11/19 07:49	
Dichlorodifluoromethane	ND	1.0	ug/L			09/11/19 07:49	
Ethyl ether	ND	1.0	ug/L			09/11/19 07:49	
Ethylbenzene	ND	1.0	ug/L			09/11/19 07:49	
Ethylene Dibromide	ND	1.0	ug/L			09/11/19 07:49	
Hexachlorobutadiene Isopropyl ether	ND ND	0.40	ug/L ug/L			09/11/19 07:49 09/11/19 07:49	

Eurofins TestAmerica, Buffalo

6

8

10

12

14

Client: ERM-Northeast Job ID: 480-158731-1

Project/Site: IDS Wayland

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Client Sample ID: TB-20190905-01

Date Collected: 09/05/19 00:00 Date Received: 09/06/19 06:15 Lab Sample ID: 480-158731-4

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND ND	1.0	ug/L		09/11/19 07:49	1
Methyl tert-butyl ether	ND	1.0	ug/L		09/11/19 07:49	1
Methylene Chloride	ND	1.0	ug/L		09/11/19 07:49	1
m-Xylene & p-Xylene	ND	2.0	ug/L		09/11/19 07:49	1
Naphthalene	ND	5.0	ug/L		09/11/19 07:49	1
n-Butylbenzene	ND	1.0	ug/L		09/11/19 07:49	1
N-Propylbenzene	ND	1.0	ug/L		09/11/19 07:49	1
o-Xylene	ND	1.0	ug/L		09/11/19 07:49	1
sec-Butylbenzene	ND	1.0	ug/L		09/11/19 07:49	1
Styrene	ND	1.0	ug/L		09/11/19 07:49	1
Tert-amyl methyl ether	ND	5.0	ug/L		09/11/19 07:49	1
Tert-butyl ethyl ether	ND	5.0	ug/L		09/11/19 07:49	1
tert-Butylbenzene	ND	1.0	ug/L		09/11/19 07:49	1
Tetrachloroethene	ND	1.0	ug/L		09/11/19 07:49	1
Tetrahydrofuran	ND	10	ug/L		09/11/19 07:49	1
Toluene	ND	1.0	ug/L		09/11/19 07:49	1
trans-1,2-Dichloroethene	ND	1.0	ug/L		09/11/19 07:49	1
trans-1,3-Dichloropropene	ND	0.40	ug/L		09/11/19 07:49	1
Trichloroethene	ND	1.0	ug/L		09/11/19 07:49	1
Trichlorofluoromethane	ND	1.0	ug/L		09/11/19 07:49	1
Vinyl chloride	ND	1.0	ug/L		09/11/19 07:49	1
Dibromomethane	ND	1.0	ug/L		09/11/19 07:49	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac

70 - 130

70 - 130

70 - 130

95

102

103

Eurofins TestAmerica, Buffalo

09/11/19 07:49

09/11/19 07:49

09/11/19 07:49

2

Λ

5

7

10

12

13

Surrogate Summary

Client: ERM-Northeast Job ID: 480-158731-1

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

480-158731-3 MW-217D-20190905-01 97 106 107 480-158731-4 TB-20190905-01 95 102 103 LCS 480-491230/6 Lab Control Sample 93 100 98 LCSD 480-491230/47 Lab Control Sample Dup 99 106 105				Pe	ercent Surr
480-158731-3 MW-217D-20190905-01 97 106 107 480-158731-4 TB-20190905-01 95 102 103 LCS 480-491230/6 Lab Control Sample 93 100 98 LCSD 480-491230/47 Lab Control Sample Dup 99 106 105			TOL	DCA	BFB
480-158731-4 TB-20190905-01 95 102 103 LCS 480-491230/6 Lab Control Sample 93 100 98 LCSD 480-491230/47 Lab Control Sample Dup 99 106 105	Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)
480-158731-4 TB-20190905-01 95 102 103 LCS 480-491230/6 Lab Control Sample 93 100 98 LCSD 480-491230/47 Lab Control Sample Dup 99 106 105					
480-158731-4 TB-20190905-01 95 102 103 LCS 480-491230/6 Lab Control Sample 93 100 98 LCSD 480-491230/47 Lab Control Sample Dup 99 106 105	480-158731-3	MW-217D-20190905-01	97	106	107
LCSD 480-491230/47 Lab Control Sample Dup 99 106 105	480-158731-4				
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	LCS 480-491230/6	Lab Control Sample	93	100	98
MR 480 401230/10 Method Blank 08 107 102	LCSD 480-491230/47	Lab Control Sample Dup	99	106	105
MB 400-49 1230/10 Method Blank 90 107 102	MB 480-491230/10	Method Blank	98	107	102

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

QC Sample Results

Client: ERM-Northeast Job ID: 480-158731-1 Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-491230/10

Matrix: Water

Client	Sample	ID:	Meth	od Bl	ank
	Pro	ep 1	Гуре:	Total	/NA

Analysis Batch: 491230	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			09/10/19 23:22	1
1,1,1-Trichloroethane	ND		1.0		ug/L			09/10/19 23:22	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			09/10/19 23:22	1
1,1,2-Trichloroethane	ND		1.0		ug/L			09/10/19 23:22	1
1,1-Dichloroethane	ND		1.0		ug/L			09/10/19 23:22	1
1,1-Dichloroethene	ND		1.0		ug/L			09/10/19 23:22	1
1,1-Dichloropropene	ND		1.0		ug/L			09/10/19 23:22	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			09/10/19 23:22	1
1,2,3-Trichloropropane	ND		1.0		ug/L			09/10/19 23:22	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			09/10/19 23:22	1
1,2,4-Trimethylbenzene	ND		1.0		ug/L			09/10/19 23:22	1
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			09/10/19 23:22	1
1,2-Dichlorobenzene	ND		1.0		ug/L			09/10/19 23:22	1
1.2-Dichloroethane	ND		1.0		ug/L			09/10/19 23:22	1
1,2-Dichloropropane	ND		1.0		ug/L			09/10/19 23:22	1
1,3,5-Trimethylbenzene	ND		1.0		ug/L			09/10/19 23:22	1
1,3-Dichlorobenzene	ND		1.0		ug/L			09/10/19 23:22	
1,3-Dichloropropane	ND		1.0		ug/L			09/10/19 23:22	1
1,4-Dichlorobenzene	ND		1.0		ug/L			09/10/19 23:22	
1,4-Dioxane	ND		50		ug/L			09/10/19 23:22	1
2,2-Dichloropropane	ND		1.0		ug/L			09/10/19 23:22	1
	ND		1.0					09/10/19 23:22	1
2-Butanone (MEK)					ug/L				
2-Chlorotoluene	ND		1.0		ug/L			09/10/19 23:22	1
2-Hexanone	ND		10		ug/L			09/10/19 23:22	1
4-Chlorotoluene	ND		1.0		ug/L			09/10/19 23:22	1
4-Isopropyltoluene	ND		1.0		ug/L			09/10/19 23:22	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			09/10/19 23:22	1
Acetone	ND		50		ug/L			09/10/19 23:22	1
Benzene	ND		1.0		ug/L			09/10/19 23:22	1
Bromobenzene	ND		1.0		ug/L			09/10/19 23:22	1
Bromoform	ND		1.0		ug/L			09/10/19 23:22	1
Bromomethane	ND		2.0		ug/L			09/10/19 23:22	1
Carbon disulfide	ND		10		ug/L			09/10/19 23:22	1
Carbon tetrachloride	ND		1.0		ug/L			09/10/19 23:22	1
Chlorobenzene	ND		1.0		ug/L			09/10/19 23:22	1
Chlorobromomethane	ND		1.0		ug/L			09/10/19 23:22	1
Chlorodibromomethane	ND		0.50		ug/L			09/10/19 23:22	1
Chloroethane	ND		2.0		ug/L			09/10/19 23:22	1
Chloroform	ND		1.0		ug/L			09/10/19 23:22	1
Chloromethane	ND		2.0		ug/L			09/10/19 23:22	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			09/10/19 23:22	1
cis-1,3-Dichloropropene	ND		0.40		ug/L			09/10/19 23:22	1
Dichlorobromomethane	ND		0.50		ug/L			09/10/19 23:22	1
Dichlorodifluoromethane	ND		1.0		ug/L			09/10/19 23:22	1
Ethyl ether	ND		1.0		ug/L			09/10/19 23:22	1
Ethylbenzene	ND		1.0		ug/L			09/10/19 23:22	
Ethylene Dibromide	ND		1.0		ug/L			09/10/19 23:22	1
Hexachlorobutadiene	ND		0.40		ug/L			09/10/19 23:22	1

Eurofins TestAmerica, Buffalo

Page 15 of 27

9/25/2019 (Rev. 1)

Job ID: 480-158731-1

Client: ERM-Northeast

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-491230/10

Matrix: Water

Analysis Batch: 491230

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropyl ether	ND		10		ug/L			09/10/19 23:22	1
Isopropylbenzene	ND		1.0		ug/L			09/10/19 23:22	1
Methyl tert-butyl ether	ND		1.0		ug/L			09/10/19 23:22	1
Methylene Chloride	ND		1.0		ug/L			09/10/19 23:22	1
m-Xylene & p-Xylene	ND		2.0		ug/L			09/10/19 23:22	1
Naphthalene	ND		5.0		ug/L			09/10/19 23:22	1
n-Butylbenzene	ND		1.0		ug/L			09/10/19 23:22	1
N-Propylbenzene	ND		1.0		ug/L			09/10/19 23:22	1
o-Xylene	ND		1.0		ug/L			09/10/19 23:22	1
sec-Butylbenzene	ND		1.0		ug/L			09/10/19 23:22	
Styrene	ND		1.0		ug/L			09/10/19 23:22	1
Tert-amyl methyl ether	ND		5.0		ug/L			09/10/19 23:22	1
Tert-butyl ethyl ether	ND		5.0		ug/L			09/10/19 23:22	
tert-Butylbenzene	ND		1.0		ug/L			09/10/19 23:22	-
Tetrachloroethene	ND		1.0		ug/L			09/10/19 23:22	1
Tetrahydrofuran	ND		10		ug/L			09/10/19 23:22	1
Toluene	ND		1.0		ug/L			09/10/19 23:22	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			09/10/19 23:22	1
trans-1,3-Dichloropropene	ND		0.40		ug/L			09/10/19 23:22	
Trichloroethene	ND		1.0		ug/L			09/10/19 23:22	
Trichlorofluoromethane	ND		1.0		ug/L			09/10/19 23:22	1
Vinyl chloride	ND		1.0		ug/L			09/10/19 23:22	
Dibromomethane	ND		1.0		ug/L			09/10/19 23:22	1

MR MR

	IVID	IVID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		70 - 130		09/10/19 23:22	1
1,2-Dichloroethane-d4 (Surr)	107		70 - 130		09/10/19 23:22	1
4-Bromofluorobenzene (Surr)	102		70 - 130		09/10/19 23:22	1

Lab Sample ID: LCS 480-491230/6

Matrix: Water

Analysis Batch: 491230

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Spike Added	Regult					
	iveanit	Qualifier	Unit	D	%Rec	Limits
25.0	22.8		ug/L		91	70 - 130
25.0	25.3		ug/L		101	70 - 130
25.0	23.2		ug/L		93	70 - 130
25.0	22.6		ug/L		90	70 - 130
25.0	23.8		ug/L		95	70 - 130
25.0	26.7		ug/L		107	70 - 130
25.0	24.5		ug/L		98	70 - 130
25.0	23.7		ug/L		95	70 - 130
25.0	23.6		ug/L		94	70 - 130
25.0	23.9		ug/L		96	70 - 130
25.0	23.3		ug/L		93	70 - 130
25.0	21.6		ug/L		86	70 - 130
25.0	24.5		ug/L		98	70 - 130
25.0	23.1		ug/L		93	70 - 130
	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	25.0 25.3 25.0 23.2 25.0 22.6 25.0 23.8 25.0 26.7 25.0 24.5 25.0 23.7 25.0 23.6 25.0 23.9 25.0 23.3 25.0 21.6 25.0 24.5	25.0 25.3 25.0 23.2 25.0 22.6 25.0 23.8 25.0 26.7 25.0 24.5 25.0 23.7 25.0 23.6 25.0 23.9 25.0 23.3 25.0 21.6 25.0 24.5	25.0 25.3 ug/L 25.0 23.2 ug/L 25.0 22.6 ug/L 25.0 23.8 ug/L 25.0 26.7 ug/L 25.0 26.7 ug/L 25.0 24.5 ug/L 25.0 23.7 ug/L 25.0 23.6 ug/L 25.0 23.9 ug/L 25.0 23.3 ug/L 25.0 23.3 ug/L 25.0 24.5 ug/L 25.0 24.5 ug/L	25.0 25.3 ug/L 25.0 23.2 ug/L 25.0 22.6 ug/L 25.0 23.8 ug/L 25.0 26.7 ug/L 25.0 24.5 ug/L 25.0 23.7 ug/L 25.0 23.6 ug/L 25.0 23.9 ug/L 25.0 23.3 ug/L 25.0 21.6 ug/L 25.0 24.5 ug/L	25.0 25.3 ug/L 101 25.0 23.2 ug/L 93 25.0 22.6 ug/L 90 25.0 23.8 ug/L 95 25.0 26.7 ug/L 107 25.0 24.5 ug/L 98 25.0 23.7 ug/L 95 25.0 23.6 ug/L 94 25.0 23.9 ug/L 96 25.0 23.3 ug/L 93 25.0 21.6 ug/L 86 25.0 24.5 ug/L 98

Eurofins TestAmerica, Buffalo

QC Sample Results

Client: ERM-Northeast Job ID: 480-158731-1

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-491230/6

Matrix: Water

1,3-Dichloropropane

Tetrachloroethene

Analysis Batch: 491230

Client Sample ID: Lab Control Sample

 Gampio		0011610	· Gampio	
	Prep	Type:	Total/NA	

Spike LCS LCS %Rec. **Analyte** Added Result Qualifier Unit %Rec Limits 23.0 1.2-Dichloropropane 25.0 ug/L 92 70 - 130 1,3,5-Trimethylbenzene 25.0 94 70 - 130 23 4 ug/L 1,3-Dichlorobenzene 25.0 23.7

22 0

ug/L 95 70 - 130 88 ug/L 70 - 130 96 70 - 130 ug/L 84 70 - 130 ug/L 92 70 - 130 ug/L 155 70 - 130

25.0 1,4-Dichlorobenzene 24.1 500 420 1,4-Dioxane 25.0 2,2-Dichloropropane 23.0 2-Butanone (MEK) 125 193 ug/L 2-Chlorotoluene 25.0 25.6 ug/L 103 70 - 130 2-Hexanone 125 106 ug/L 84 70 - 130

25.0

4-Chlorotoluene 25.0 24.5 ug/L 98 70 - 130 ug/L 4-Isopropyltoluene 25.0 99 70 - 130 248 4-Methyl-2-pentanone (MIBK) 125 103 ug/L 83 70 - 130 90 Acetone 125 112 ug/L 70 - 130 Benzene 25.0 24.0 ug/L 96 70 - 130 Bromobenzene 25.0 24.6 ug/L 98 70 - 130 25.0 96 70 - 130 Bromoform 24.0 ug/L

25.0 28.2 70 - 130 Bromomethane ug/L 113 70 - 130 Carbon disulfide 25.0 24.4 98 ug/L Carbon tetrachloride 25.0 25.0 100 70 - 130 ug/L 92 Chlorobenzene 25.0 23.0 ug/L 70 - 130Chlorobromomethane 25.0 24.9 ug/L 100 70 - 130

Chlorodibromomethane 25.0 23.5 ug/L 94 70 - 130 Chloroethane 25.0 31.4 ug/L 126 70 - 130 Chloroform 25.0 23.7 ug/L 95 70 - 130 Chloromethane 25.0 24.4 ug/L 98 70 - 130 cis-1,2-Dichloroethene 25.0 23.9 96 70 - 130 ug/L 25.0 23.4 94 70 - 130 cis-1,3-Dichloropropene ug/L Dichlorobromomethane 25.0 23.5 ug/L 94 70 - 130 Dichlorodifluoromethane 25.0 122 70 - 130 30.4 ug/L Ethyl ether 25.0 24.5 ug/L 98 70 - 130

25.0 23.0 92 70 - 130 Ethylbenzene ug/L Ethylene Dibromide 25.0 23.0 92 70 - 130 ug/L 25.0 25.1 100 70 - 130 Hexachlorobutadiene ug/L Isopropyl ether 25.0 22.3 ug/L 89 70 - 130 25.0 23.7 95 70 - 130 Isopropylbenzene ug/L Methyl tert-butyl ether 25.0 23.4 ug/L 94 70 - 130Methylene Chloride 25.0 23.6 ug/L 94 70 - 130 92 m-Xylene & p-Xylene 25.0 23.0 ug/L 70 - 130 Naphthalene 25.0 23.1 92 70 - 130

ug/L 25.0 23.8 95 70 - 130 n-Butylbenzene ug/L N-Propylbenzene 25.0 23.1 ug/L 92 70 - 130 93 o-Xylene 25.0 23.1 ug/L 70 - 130 sec-Butylbenzene 25.0 23.9 ug/L 96 70 - 130 Styrene 25.0 22.8 ug/L 91 70 - 130Tert-amyl methyl ether 25.0 23.9 ug/L 96 70 - 130 Tert-butyl ethyl ether 25.0 23.0 ug/L 92 70 - 130 tert-Butylbenzene 25.0 23.2 ug/L 93 70 - 130

25.0

Eurofins TestAmerica, Buffalo

70 - 130

116

28.9

ug/L

QC Sample Results

Job ID: 480-158731-1 Client: ERM-Northeast

Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-491230/6

Matrix: Water

Analysis Batch: 491230

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrahydrofuran	50.0	53.6		ug/L		107	70 - 130	
Toluene	25.0	22.9		ug/L		92	70 - 130	
trans-1,2-Dichloroethene	25.0	24.9		ug/L		99	70 - 130	
trans-1,3-Dichloropropene	25.0	21.3		ug/L		85	70 - 130	
Trichloroethene	25.0	25.4		ug/L		101	70 - 130	
Trichlorofluoromethane	25.0	30.1		ug/L		120	70 - 130	
Vinyl chloride	25.0	26.5		ug/L		106	70 - 130	
Dibromomethane	25.0	25.0		ug/L		100	70 ₋ 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	93		70 - 130
1,2-Dichloroethane-d4 (Surr)	100		70 - 130
4-Bromofluorobenzene (Surr)	98		70 - 130

Lab Sample ID: LCSD 480-491230/47

Matrix: Water

Analysis Batch: 491230

Client Sample	ID: L	.ab	Control Sample Dup
			Prep Type: Total/NA

Analysis Batch: 491230									
	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	24.7		ug/L		99	70 - 130	8	20
1,1,1-Trichloroethane	25.0	26.1		ug/L		104	70 - 130	3	20
1,1,2,2-Tetrachloroethane	25.0	24.8		ug/L		99	70 - 130	7	20
1,1,2-Trichloroethane	25.0	25.1		ug/L		100	70 - 130	11	20
1,1-Dichloroethane	25.0	25.3		ug/L		101	70 - 130	6	20
1,1-Dichloroethene	25.0	27.3		ug/L		109	70 - 130	2	20
1,1-Dichloropropene	25.0	25.3		ug/L		101	70 - 130	3	20
1,2,3-Trichlorobenzene	25.0	25.3		ug/L		101	70 - 130	7	20
1,2,3-Trichloropropane	25.0	25.5		ug/L		102	70 - 130	8	20
1,2,4-Trichlorobenzene	25.0	25.2		ug/L		101	70 - 130	6	20
1,2,4-Trimethylbenzene	25.0	24.9		ug/L		100	70 - 130	7	20
1,2-Dibromo-3-Chloropropane	25.0	23.2		ug/L		93	70 - 130	7	20
1,2-Dichlorobenzene	25.0	26.1		ug/L		104	70 - 130	6	20
1,2-Dichloroethane	25.0	24.7		ug/L		99	70 - 130	7	20
1,2-Dichloropropane	25.0	24.0		ug/L		96	70 - 130	4	20
1,3,5-Trimethylbenzene	25.0	24.7		ug/L		99	70 - 130	5	20
1,3-Dichlorobenzene	25.0	25.3		ug/L		101	70 - 130	7	20
1,3-Dichloropropane	25.0	23.9		ug/L		96	70 - 130	8	20
1,4-Dichlorobenzene	25.0	25.8		ug/L		103	70 - 130	7	20
1,4-Dioxane	500	499		ug/L		100	70 - 130	17	20
2,2-Dichloropropane	25.0	23.4		ug/L		94	70 - 130	2	20
2-Butanone (MEK)	125	208	*	ug/L		166	70 - 130	7	20
2-Chlorotoluene	25.0	26.7		ug/L		107	70 - 130	4	20
2-Hexanone	125	116		ug/L		93	70 - 130	9	20
4-Chlorotoluene	25.0	26.6		ug/L		107	70 - 130	8	20
4-Isopropyltoluene	25.0	26.1		ug/L		104	70 - 130	5	20
4-Methyl-2-pentanone (MIBK)	125	112		ug/L		90	70 - 130	9	20
Acetone	125	110		ug/L		88	70 - 130	1	20
Benzene	25.0	25.1		ug/L		100	70 - 130	5	20

Job ID: 480-158731-1

Client: ERM-Northeast Project/Site: IDS Wayland

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-491230/47

Matrix: Water

Analysis Batch: 491230

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

•	Spike	LCSD	D LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromobenzene	25.0	25.9		ug/L		104	70 - 130	5	20
Bromoform	25.0	24.8		ug/L		99	70 - 130	3	20
Bromomethane	25.0	28.3		ug/L		113	70 - 130	0	20
Carbon disulfide	25.0	25.4		ug/L		102	70 - 130	4	20
Carbon tetrachloride	25.0	26.1		ug/L		105	70 - 130	4	20
Chlorobenzene	25.0	24.5		ug/L		98	70 - 130	6	20
Chlorobromomethane	25.0	25.3		ug/L		101	70 - 130	2	20
Chlorodibromomethane	25.0	25.3		ug/L		101	70 - 130	8	20
Chloroethane	25.0	31.8		ug/L		127	70 - 130	1	20
Chloroform	25.0	24.9		ug/L		99	70 - 130	5	20
Chloromethane	25.0	25.9		ug/L		104	70 - 130	6	20
cis-1,2-Dichloroethene	25.0	24.9		ug/L		100	70 - 130	4	20
cis-1,3-Dichloropropene	25.0	24.7		ug/L		99	70 - 130	5	20
Dichlorobromomethane	25.0	25.1		ug/L		101	70 - 130	7	20
Dichlorodifluoromethane	25.0	31.6		ug/L		126	70 - 130	4	20
Ethyl ether	25.0	25.8		ug/L		103	70 - 130	5	20
Ethylbenzene	25.0	24.5		ug/L		98	70 - 130	6	20
Ethylene Dibromide	25.0	25.3		ug/L		101	70 - 130	10	20
Hexachlorobutadiene	25.0	26.9		ug/L		108	70 - 130	7	20
Isopropyl ether	25.0	23.2		ug/L		93	70 - 130	4	20
Isopropylbenzene	25.0	25.0		ug/L		100	70 - 130	5	20
Methyl tert-butyl ether	25.0	25.4		ug/L		102	70 - 130	8	20
Methylene Chloride	25.0	25.4		ug/L		102	70 - 130	8	20
m-Xylene & p-Xylene	25.0	24.1		ug/L		97	70 - 130	5	20
Naphthalene	25.0	24.6		ug/L		99	70 - 130	6	20
n-Butylbenzene	25.0	25.0		ug/L		100	70 - 130	5	20
N-Propylbenzene	25.0	24.7		ug/L		99	70 - 130	7	20
o-Xylene	25.0	24.5		ug/L		98	70 - 130	6	20
sec-Butylbenzene	25.0	25.4		ug/L		102	70 - 130	6	20
Styrene	25.0	24.4		ug/L		98	70 - 130	7	20
Tert-amyl methyl ether	25.0	25.3		ug/L		101	70 - 130	6	20
Tert-butyl ethyl ether	25.0	24.1		ug/L		97	70 - 130	5	20
tert-Butylbenzene	25.0	24.2		ug/L		97	70 - 130	4	20
Tetrachloroethene	25.0	29.7		ug/L		119	70 - 130	3	20
Tetrahydrofuran	50.0	57.1		ug/L		114	70 - 130	6	20
Toluene	25.0	24.4		ug/L		98	70 - 130	7	20
trans-1,2-Dichloroethene	25.0	26.0		ug/L		104	70 - 130	4	20
trans-1,3-Dichloropropene	25.0	22.7		ug/L		91	70 - 130	6	20
Trichloroethene	25.0	26.2		ug/L		105	70 - 130	3	20
Trichlorofluoromethane	25.0	30.5		ug/L		122	70 - 130	1	20
Vinyl chloride	25.0	27.6		ug/L		110	70 - 130	4	20
Dibromomethane	25.0	26.0		ug/L		104	70 - 130	4	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		70 - 130
1,2-Dichloroethane-d4 (Surr)	106		70 - 130
4-Bromofluorobenzene (Surr)	105		70 - 130

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158731-1

GC/MS VOA

Analysis Batch: 491230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158731-1	MW-1040-20190905-01	Total/NA	Water	8260C	
480-158731-2	MW-1023-20190905-01	Total/NA	Water	8260C	
480-158731-3	MW-217D-20190905-01	Total/NA	Water	8260C	
480-158731-4	TB-20190905-01	Total/NA	Water	8260C	
MB 480-491230/10	Method Blank	Total/NA	Water	8260C	
LCS 480-491230/6	Lab Control Sample	Total/NA	Water	8260C	
LCSD 480-491230/47	Lab Control Sample Dup	Total/NA	Water	8260C	

2

4

5

7

0

40

11

13

14

Client: ERM-Northeast Job ID: 480-158731-1 Project/Site: IDS Wayland

Lab Sample ID: 480-158731-3

Matrix: Water

10

Date Received: 09/06/19 06:15

Prep Type

Total/NA

Total/NA

Batch Туре Analysis **Batch** Method 8260C

Run

Dilution Batch Factor Number

Prepared or Analyzed 491230 09/11/19 07:25 RJF

Analyst Lab

TAL BUF

Lab Sample ID: 480-158731-4

Matrix: Water

Client Sample ID: MW-217D-20190905-01

Date Collected: 09/05/19 00:00

Date Collected: 09/05/19 09:45

Date Received: 09/06/19 06:15

_	
	Batch
Prep Type	Type

Batch	Batch
Туре	Method
Analysis	8260C

8260C

Dilution Run **Factor**

Batch Number

Prepared or Analyzed 491230 09/11/19 07:49 RJF

Analyst Lab TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: ERM-Northeast Job ID: 480-158731-1

Project/Site: IDS Wayland

Laboratory: Eurofins TestAmerica, Buffalo

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Da
Arkansas DEQ	State	88-0686	07-06-20
Arkansas DEQ	State Program	88-0686	07-06-20
California	State	2931	04-01-20
California	State Program	2931	04-01-20
Connecticut	State	PH-0568	09-30-20
Connecticut	State Program	PH-0568	09-30-20
Florida	NELAP	E87672	06-30-20
Florida	NELAP	E87672	06-30-20
Georgia	State	10026 (NY)	03-31-20
Georgia	State Program	10026 (NY)	03-31-20
Georgia	State Program	956	03-31-20
Georgia (DW)	State	956	03-31-20
Illinois	NELAP	200003	09-30-19 *
Illinois	NELAP	200003	09-30-19 *
lowa	State	374	02-28-21
lowa	State Program	374	02-28-21
Kansas	NELAP	E-10187	01-31-20
Kansas	NELAP	E-10187	01-31-20
Kentucky (DW)	State	90029	12-31-20
Kentucky (DW)	State Program	90029	12-31-19
Kentucky (UST)	State Program	30	03-31-20
Kentucky (WW)	State	KY90029	12-31-20
Kentucky (WW)	State Program	90029	12-31-20
Louisiana	NELAP	02031	06-30-20
Louisiana	NELAP	02031	06-30-20
Maine	State Program	NY00044	12-04-20
Maryland	State	294	03-31-20
Maryland	State Program	294	03-31-20
Massachusetts	State Program	M-NY044	06-30-20
Michigan	State	9937	03-31-20
Michigan	State Program	9937	03-31-20
Minnesota	NELAP	036-999-337	12-31-19
Minnesota	NELAP	1524384	12-31-19
New Hampshire	NELAP	2337	11-17-19 *
New Jersey	NELAP	NY455	06-30-20
New Jersey	NELAP	NY455	06-25-20
New York	NELAP	10026	03-31-20
New York	NELAP	10026	04-01-20
North Dakota	State	R-176	03-31-20
North Dakota	State Program	R-176	03-31-20
Oklahoma	State Program	9421	08-31-20
Oregon	NELAP	NY200003	06-09-20
Oregon	NELAP	NY200003	06-10-20
Pennsylvania	NELAP	68-00281	07-31-20
Pennsylvania	NELAP	68-00281	08-01-20
Rhode Island	State	LAO00328	12-30-20
Rhode Island	State Program	LAO00328	12-30-19
Tennessee	State	02970	03-31-20
Tennessee	State Program	TN02970	03-31-20
Texas	NELAP	T104704412-15-6	07-31-20

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins TestAmerica, Buffalo

4

5

Q

9

11

40

14

Accreditation/Certification Summary

Client: ERM-Northeast Job ID: 480-158731-1 Project/Site: IDS Wayland

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704412-18-10	08-01-20
USDA	Federal	P330-11-00386	02-06-21
USDA	US Federal Programs	P330-18-00039	02-06-21
Virginia	NELAP	460185	09-14-20
Virginia	NELAP	460185	09-14-19 *
Washington	State	C784	02-10-20
Washington	State Program	C784	02-10-20
Wisconsin	State Program	998310390	08-31-20

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: ERM-Northeast Project/Site: IDS Wayland Job ID: 480-158731-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds (GC/MS)	MA DEP	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

MA DEP = Massachusetts Department Of Environmental Protection

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

А

7

8

4 0

11

12

4 A

Sample Summary

Client: ERM-Northeast
Project/Site: IDS Wayland
Job ID: 480-158731-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asse
480-158731-1	MW-1040-20190905-01	Water	09/05/19 08:55	09/06/19 06:15	
480-158731-2	MW-1023-20190905-01	Water	09/05/19 09:25	09/06/19 06:15	
480-158731-3	MW-217D-20190905-01	Water	09/05/19 09:45	09/06/19 06:15	
480-158731-4	TB-20190905-01	Water	09/05/19 00:00	09/06/19 06:15	

Client: ERM-Northeast Job Number: 480-158731-1

List Source: Eurofins TestAmerica, Buffalo

Login Number: 158731 List Number: 1

Creator: Harper, Marcus D

Creator. Harper, Marcus D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	ERM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

1		
1		
١.		
	7	-
	4	

Chain of Custody Record

Temperature on Receipt

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Drinking Water? Yes□ No□

TAL-4124 (1007)							
Client ERM		Project Manager Loth e	ie wolf		Date 08/05/119	Chain of Custody Number 280097	Je
Address One Beacon St, Sth Floor		Telephone Number (Area Code)/Fax Number 978 - 566-0078 (F	- 566-0078 (Paulina	7	Lab Number	Page 4 of	1
City Boston State Zip Code	80	Site Contact	Lab Contact		Analysis (Attach list if more space is needed)		
/ MA		Carrier/Waybill Number		201-9		Special Instructions/	uctions/
Contract/Purchase Order/Quote No.		Matrix	Containers & Preservatives	174 0			Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date 7	Ilme pas snoanby	HOBN HOBN HOBN HOSZH FOSZH W SBUDD			401	
10-5040405- EFF	09 los 119 09:45	sh:	×	3		- 3	
80 TB-20140405-01	08/05/18 ·	×		1		- 1 Lab provided	ded
27 of 2						_	
7							
				480-	480-158731 Chain of Custody		
						10	
Possible Hazard Identification Non-Hazard	□ Poison B 🔀	Sample Disposal M. Unknown Return To Client	osal o Client Disposal By Lab	Archive For _	(A fee may be asses: Months longer than 1 month)	(A fee may be assessed if samples are retained longer than 1 month)	peu
Turn Around Time Required 24 Hours	21 Days	Other_	OC Requirements (Specify)	Specify)			
States	1	184/5	1. Received By	2		9/6/19 O	3615
25/2. Relinquished By		mT 97-	2.8			Date	ıme
3. Relinquished By		Date	e 3. Received By			Date Time	эи
S Comments				-	#13,		

15